×

A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives. (English) Zbl 07848635

Summary: The aim of this research is to propose a new fractional Euler-Lagrange equation for a harmonic oscillator. The theoretical analysis is given in order to derive the equation of motion in a fractional framework. The new equation has a complicated structure involving the left and right fractional derivatives of Caputo-Fabrizio type, so a new numerical method is developed in order to solve the above-mentioned equation effectively. As a result, we can see different asymptotic behaviors according to the flexibility provided by the use of the fractional calculus approach, a fact which may be invisible when we use the classical Lagrangian technique. This capability helps us to better understand the complex dynamics associated with natural phenomena.

MSC:

26Axx Functions of one variable
34Axx General theory for ordinary differential equations
35Rxx Miscellaneous topics in partial differential equations
Full Text: DOI

References:

[1] Greiner, W., Classical Mechanics, Systems of Particles and Hamiltonian Dynamics, 2010, Springer-Verlag: Springer-Verlag Berlin Heidelberg
[2] Agrawal, O. P., Formulation of euler-lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272, 1, 368-379, 2002 · Zbl 1070.49013
[3] Haq, S. U.; Khan, M. A.; Shah, N. A., Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium, Chin. J. Phys., 56, 1, 261-269, 2018 · Zbl 1543.76129
[4] Sarwar, S.; Iqbal, S., Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction, Chin. J. Phys., 56, 1, 374-384, 2018 · Zbl 1543.34081
[5] Yadav, V. K.; Shukla, V. K.; Das, S.; Leung, A. Y.T.; Srivastava, M., Function projective synchronization of fractional order satellite system and its stability analysis for incommensurate case, Chin. J. Phys., 56, 2, 696-707, 2018 · Zbl 1543.34073
[6] Saleh, R.; Kassem, M.; Mabrouk, S. M., Exact solutions of nonlinear fractional order partial differential equations via singular manifold method, Chin. J. Phys., 61, 290-300, 2019 · Zbl 07824993
[7] Aleem, M.; Asjad, M. I.; Chowdhury, M. S.R.; Hussanan, A., Analysis of mathematical model of fractional viscous fluid through a vertical rectangular channel, Chin. J. Phys., 61, 336-350, 2019 · Zbl 07824997
[8] Rauf, A.; Mahsud, Y.; Mirza, I. A.; Rubbab, Q., Multi-layer flows of immiscible fractional maxwell fluids with generalized thermal flux, Chin. J. Phys., 62, 313-334, 2019 · Zbl 07828462
[9] Jajarmi, A.; Yusuf, A.; Baleanu, D.; Inc, M., A new fractional HRSV model and its optimal control: a non-singular operator approach, Physica A, 547, 123860, 2020 · Zbl 07530156
[10] Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S., A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton Fractals, 134, 109705, 2020 · Zbl 1483.92041
[11] Yıldız, T. A.; Jajarmi, A.; Yıldız, B.; Baleanu, D., New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete Cont. Dyn. Syst.-S, 13, 3, 407-428, 2020 · Zbl 1439.49010
[12] Jajarmi, A.; Arshad, S.; Baleanu, D., A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A, 535, 122524, 2019 · Zbl 07571256
[13] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Mozyrska, D., A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29, 8, 083127, 2019 · Zbl 1420.92039
[14] Jajarmi, A.; Ghanbari, B.; Baleanu, D., A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29, 9, 093111, 2019 · Zbl 1423.92093
[15] Mohammadi, F.; Moradi, L.; Baleanu, D.; Jajarmi, A., A hybrid functions numerical scheme for fractional optimal control problems: application to non-analytic dynamical systems, J. Vib. Control, 24, 21, 5030-5043, 2018
[16] Jajarmi, A.; Baleanu, D., On the fractional optimal control problems with a general derivative operator, Asian J. Control, 2019 · Zbl 1420.92039
[17] Sajjadi, S. S.; Baleanu, D.; Jajarmi, A.; Pirouz, H. M., A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Soliton Fractals, 138, 109919, 2020 · Zbl 1490.92005
[18] Asad, J. H.; Baleanu, D.; Ghanbari, B.; Jajarmi, A.; Pirouz, H. M., Planar system-masses in an equilateral triangle: numerical study within fractional calculus, CMES-Comp. Model. Eng., 124, 3, 953-968, 2020
[19] Atangana, A.; Bonyah, E.; Elsadany, A. A., A fractional order optimal 4d chaotic financial model with Mittag-Leffler law, Chin. J. Phys., 65, 38-53, 2020 · Zbl 07832429
[20] Asjad, M. I.; Aleem, M.; Ahmadian, A.; Salahshour, S.; Ferrara, M., New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions, Chin. J. Phys., 66, 497-516, 2020 · Zbl 07832397
[21] Odabasi, M., Traveling wave solutions of conformable time-fractional Zakharov-Kuznetsov and Zoomeron equations, Chin. J. Phys., 64, 194-202, 2020 · Zbl 07830262
[22] Yang, X. J., New non-conventional methods for quantitative concepts of anomalous rheology, Therm. Sci., 23, 6B, 4117-4127, 2019
[23] Das, S., Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl., 57, 3, 483-487, 2009 · Zbl 1165.35398
[24] Das, S.; Vishal, K.; Gupta, P. K., Solution of the nonlinear fractional diffusion equation with absorbent term and external force, Appl. Math. Model., 35, 8, 3970-3979, 2011 · Zbl 1221.35437
[25] Gao, F., General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems, Therm. Sci., 21, 1, S11-S18, 2017
[26] Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, 2019, CRC Press: CRC Press New York · Zbl 1417.26001
[27] Feng, Y. Y.; Yang, X. J.; Liu, J. G., On overall behavior of maxwell mechanical model by the combined Caputo fractional derivative, Chin. J. Phys., 66, 269-276, 2020 · Zbl 07832374
[28] Silva, L. F.A.d.; Júnior, V. R.P.; Ferreira, J. V.B., Fractional derivative order determination from harmonic oscillator damping factor, Chin. J. Phys., 66, 673-683, 2020 · Zbl 07832413
[29] Riewe, F., Nonconservative lagrangian and hamiltonian mechanics, Phys. Rev. E., 53, 1890-1899, 1996
[30] Laskin, N., Fractional quantum mechanics, Phys. Rev. E., 62, 3135-3145, 2000
[31] Laskin, N., Fractional quantum mechanics, Phys. Rev. E., 66, 056108, 2002
[32] Jajarmi, A.; Baleanu, D.; Sajjadi, S. S.; Asad, J. H., A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 7, 196, 2019
[33] Baleanu, D.; Sajjadi, S. S.; Jajarmi, A.; Asad, J. H., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Eur. Phys. J. Plus, 134, 181, 2019
[34] Baleanu, D.; Jajarmi, A.; Asad, J. H., Classical and fractional aspects of two coupled pendulums, Rom. Rep. Phys., 71, 1, 103, 2019
[35] Baleanu, D.; Asad, J. H.; Jajarmi, A., New aspects of the motion of a particle in a circular cavity, Proc. Rom. Acad. Ser. A, 19, 2, 361-367, 2018
[36] Baleanu, D.; Asad, J. H.; Jajarmi, A., The fractional model of spring pendulum: new features within different kernels, Proc. Rom. Acad. Ser. A, 19, 3, 447-454, 2018
[37] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Asad, J. H., The fractional features of a harmonic oscillator with position-dependent mass, Commun. Theor. Phys., 72, 5, 055002, 2020
[38] Baleanu, D.; Asad, J. H.; Petras, I., Numerical solution of the fractional Euler-Lagrange’s equations of a thin elastica model, Nonlinear Dyn., 81, 97-102, 2015 · Zbl 1431.74020
[39] Baleanu, D.; Jajarmi, A.; Asad, J. H.; Blaszczyk, T., The motion of a bead sliding on a wire in fractional sense, Acta Phys. Pol. A, 131, 6, 1561-1564, 2017
[40] Momani, S.; Odibat, Z.; Alawneh, A., Variational iteration method for solving the space- and time-fractional KdV equation, Numer. Meth. Part. D. E. J., 24, 1, 262-271, 2008 · Zbl 1130.65132
[41] Baleanu, D.; Asad, J. H.; Petras, I., Fractional Bateman-Feshbach Tikochinsky oscillator, Commun. Theor. Phys., 61, 2, 221-225, 2014
[42] Jajarmi, A.; Baleanu, D., A new iterative method for the numerical solution of high-order nonlinear fractional boundary value problems, Front. Phys., 8, 220, 2020
[43] Caputo, M.; Fabrizio, M., A new defnition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1, 2, 73-85, 2015
[44] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 87-92, 2015
[45] Haq, S. U.; Khan, M. A.; Khan, Z. A.; Ali, F., MHD Effects on the channel flow of a fractional viscous fluid through a porous medium: an application of the Caputo-Fabrizio time-fractional derivative, Chin. J. Phys., 65, 14-23, 2020 · Zbl 07832426
[46] Khlevniuk, A.; Tymchyshyn, V., Classical treatment of particle with position-dependent mass \(m ( r ) = 1 / ( 1 + r^4 )\) in 1d and 2d subjected to harmonic potential, J. Math. Phys., 59, 8, 082901, 2018 · Zbl 1398.81108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.