×

Symmetry solutions and conservation laws of a (3+1)-dimensional generalized KP-Boussinesq equation in fluid mechanics. (English) Zbl 07848654

Summary: In this paper we analyse a (3+1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation, which describes the evolution of shallow water waves. This equation was formulated not long ago, by including the term \(u_{tt}\) to the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Invoking the Lie symmetry methods we perform several symmetry reductions and reduce the equation to a fourth-order nonlinear ordinary differential equation. Consequently, this ordinary differential equation is solved and its general solution is derived connected with Weierstrass zeta function. The profiles of solutions are displayed graphically. In addition to those, we construct some travelling waves by engaging Kudryashov’s method. To complete our study we finally derive some conservation laws of the equation under consideration by appealing to the Ibragimov’s conservation theorem.

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
35Cxx Representations of solutions to partial differential equations
37Kxx Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Gao, X. Y.; Guo, Y. J.; Shan, W. R.; Yuan, Y. Q.; Zhang, C. R.; Chen, S. S., Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and \(n\) solitons for a generalized (3+1)-dimensional variable-coefficient modified kadomtsev-petviashvili system, Appl. Math. Lett., 111, 106627, 2021 · Zbl 1455.35248
[2] Aliyu, A. I.; Li, Y.; Baleanu, D., Single and combined optical solitons, and conservation laws in (2+1)-dimensions with kundu-mukherjee-naskar equation, Chin. J. Phys., 63, 410-418, 2020 · Zbl 07829585
[3] Wazwaz, A. M., The integrable vakhnenko-parkes (VP) and the modified vakhnenko-parkes (MVP) equations: multiple real and complex soliton solutions, Chin. J. Phys., 57, 375-381, 2019 · Zbl 1539.37075
[4] Mabrouk, S. M.; Rashed, A. S., N-Solitons, kink and periodic wave solutions for (3+1)-dimensional hirota bilinear equation using three distinct techniques, Chin. J. Phys., 60, 48-60, 2019 · Zbl 07823570
[5] Song, J. Y.; Yang, Y. K., Soliton solutions and conservation laws for a generalized ablowitz-ladik system, Chin. J. Phys., 60, 271-278, 2019 · Zbl 07823590
[6] Khalique, C. M.; Motsepa, T., Lie symmetries, group-invariant solutions and conservation laws of the vasicek pricing equation of mathematical finance, Physica A, 505, 871-879, 2018 · Zbl 1514.91187
[7] Peng, W. Q.; Tian, S. F.; Zhang, T. T., Initial value problem for the pair transition coupled nonlinear schrödinger equations via the riemann-hilbert method, Compl. Anal. Operator Theory, 14, 38, 2020 · Zbl 1446.35186
[8] Tian, S. F., Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized boussinesq water wave equation, Appl. Math. Lett., 100, 106056, 2020 · Zbl 1429.35017
[9] Xu, T. Y.; Tian, S. F.; Peng, W. Q., Riemann-hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear schrödinger equations, Math. Meth. Appl. Sci., 43, 2, 865-880, 2020 · Zbl 1445.35111
[10] Peng, W. Q.; Tian, S. F.; Wang, X. B.; Zhang, T. T.; Fang, Y., Riemann-hilbert method and multi-soliton solutions for three-component coupled nonlinear schrödinger equations, J. Geom. Phys., 146, 103508, 2019 · Zbl 1427.35258
[11] Zhang, L. D.; Tian, S. F.; Peng, W. Q.; Zhang, T. T.; Yan, X. J., The dynamics of lump, lumpoff and rogue wave solutions of (2+1)-dimensional hirota-satsuma-ito equations, East Asian J. Appl. Math., 10, 2, 243-255, 2020 · Zbl 1464.35296
[12] Feng, L. L.; Tian, S. F.; Zhang, T. T., Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the (2+1)-dimensional boussinesq equation, Bulletin of the Malaysian Math. Sci. Soc., 43, 1, 141-155, 2020 · Zbl 1435.35296
[13] Peng, W. Q.; Tian, S. F.; Zhang, T. T.; Fang, Y., Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear schrödinger equation, Math. Meth. Appl. Sci., 42, 18, 6865-6877, 2019 · Zbl 1434.35192
[14] Wang, M.; Tian, B.; Sun, Y.; Zhang, Z., Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput. Math. Appl., 79, 576-587, 2020 · Zbl 1443.76233
[15] Yin, H. M.; Tian, B.; Zhao, X. C., Chaotic breathers and breather fission/fusion for a vector nonlinear schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system, Appl. Math. Comput., 368, 124768, 2020 · Zbl 1433.78020
[16] Chen, S. S.; Tian, B.; Sun, Y.; Zhang, C. R., Generalized darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear schrödinger equations in nonlinear optics, Ann. Phys. (Berlin), 531, 1900011, 2019 · Zbl 07761446
[17] Hu, C. C.; Tian, B.; Yin, H. M.; Zhang, C. R.; Zhang, Z., Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized kadomtsev-petviashvili equation in a fluid, Comput. Math. Appl., 78, 166-177, 2019 · Zbl 1442.35379
[18] Du, Z.; Tian, B.; Chai, H. P.; Zhao, X. H., Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear schrödinger system in an optical fiber, Appl. Math. Lett., 102, 106110, 2020 · Zbl 1439.78012
[19] Du, X. X.; Tian, B.; Qu, Q. X.; Yuan, Y. Q.; Zhao, X. H., Lie group analysis, solitons, self-adjointness and conservation laws of the modified zakharov-kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fract., 134, 109709, 2020 · Zbl 1483.35177
[20] Zhang, C. R.; Tian, B.; Qu, Q. X.; Liu, L.; Tian, H. Y., Vector bright solitons and their interactions of the couple fokas-lenells system in a birefringent optical fiber, Z. Angew. Math. Phys., 71, 18, 2020 · Zbl 1508.35164
[21] Gao, X. Y., Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett., 91, 165-172, 2019 · Zbl 1445.76101
[22] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Water-wave symbolic computation for the earth, enceladus and titan: higher-order boussinesq-burgers system, auto- and non-auto-bäcklund transformations, Appl. Math. Lett., 104, 106170, 2020 · Zbl 1437.86001
[23] Motsepa, T.; Khalique, C. M., Closed-form solutions and conserved vectors of the (3+1)-dimensional negative-order kdv equation, Adv. Math. Model. Appl., 5, 7-18, 2020
[24] Malfliet, W.; Hereman, W., The tanh method: i exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568, 1996 · Zbl 0942.35034
[25] Malfliet, W.; Hereman, W., The tanh method: II. perturbation technique for conservative systems, Phys. Scripta, 54, 569-575, 1996 · Zbl 0942.35035
[26] Malfliet, W., The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations, J Comput Appl Math, 164, 529-541, 2004 · Zbl 1038.65102
[27] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, 1991, Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0762.35001
[28] Wazwaz, A. M., The tanh and sine-cosine method for compact and noncompact solutions of nonlinear klein gordon equation, Appl. Math. Comput., 167, 1179-1195, 2005 · Zbl 1082.65584
[29] Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188, 1467-1475, 2007 · Zbl 1119.65100
[30] Gu, C.; Hu, H.; Zhou, Z., Darboux transformation in soliton theory and its geometric applications, 2005, Springer: Springer The Netherlands · Zbl 1084.37054
[31] Hirota, R., The direct method in soliton theory, 2004, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.35111
[32] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A., 289, 69-74, 2001 · Zbl 0972.35062
[33] Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fractals, 24, 1217-1231, 2005 · Zbl 1069.35018
[34] Vitanov, N. K., Application of simplest equations of bernoulli and riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 15, 2050-2060, 2010 · Zbl 1222.35062
[35] Kudryashov, N. A.; Loguinova, N. B., Extended simplest equation method for nonlinear differential equations, Appl. Math. Comput., 205, 396-402, 2008 · Zbl 1168.34003
[36] Kudryashov, N. A., One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17, 2248-2253, 2012 · Zbl 1250.35055
[37] Zhang, L.; Khalique, C. M., Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete and Continuous dynamical systems Series S, 11, 4, 777-790, 2018
[38] Ovsiannikov, L. V., Group analysis of differential equations, 1982, Academic Press: Academic Press New York · Zbl 0485.58002
[39] Bluman, G. W.; Kumei, S., Symmetries and differential equations, 1989, Springer-Verlag: Springer-Verlag New York · Zbl 0698.35001
[40] Olver, P. J., Applications of lie groups to differential equations, second ed, 1993, Springer-Verlag: Springer-Verlag Berlin · Zbl 0785.58003
[41] N.H. Ibragimov, CRC Handbook of lie group analysis of differential equations, vols 1-3, CRC Press, Boca Raton, Florida, 1994-1996. · Zbl 0864.35001
[42] Ibragimov, N. H., Elementary lie group analysis and ordinary differential equations, 1999, John Wiley & Sons: John Wiley & Sons Chichester, NY · Zbl 1047.34001
[43] Wang, M. L.; Zhou, Y. B., The periodic wave solutions for the klein-gordon-schrödinger equations, Phys. Lett. A., 318, 84-92, 2003 · Zbl 1098.81770
[44] (8pp) · Zbl 1219.35209
[45] Gu, C. H., Soliton theory and its application, 1990, Zhejiang Science and Technology Press: Zhejiang Science and Technology Press Zhejiang
[46] Noether, E., Invariante variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen, 2, 235-257, 1918 · JFM 46.0770.01
[47] Bessel-Hagen, E., Uber die erhaltungsatze der elektrodynamik, Math. Ann., 84, 258-276, 1921 · JFM 48.0877.02
[48] Boyer, T. H., Continuous symmetries and conserved quantities, Ann. Phys., 42, 445-466, 1967 · Zbl 0149.21602
[49] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., Applications of symmetry methods to partial differential equations, 2010, Springer: Springer New York · Zbl 1223.35001
[50] Leveque, R. J., Numerical methods for conservation laws, 2nd edition, 1992, Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0847.65053
[51] Ibragimov, N. H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328, 2007 · Zbl 1160.35008
[52] Naz, R.; Mahomed, F. M.; Mason, D. P., Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, 212-230, 2008 · Zbl 1153.76051
[53] Sjöberg, A., On double reductions from symmetries and conservation laws, Nonlinear Anal. Real World Appl., 10, 3472-3477, 2009 · Zbl 1179.35038
[54] Yasar, E.; Özer, T., On symmetries, conservations laws and similarity solutions of foam drainage equation, Internat. J. Non-Linear Mech., 46, 357-362, 2011
[55] Motsepa, T.; Abudiab, M.; Khalique, C. M., A study of an extended generalized (2+1)-dimensional jaulent-miodek equation, Int. J. Nonlin. Sci. Num., 19, 391-395, 2018 · Zbl 1401.35011
[56] Anco, S. C., Generalization of Noether’s Theorem in Modern Form to Non-variational Partial Differential Equations, Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, 119-182, 2017, Fields Institute Communications 79 · Zbl 1430.35009
[57] Khalique, C. M.; Abdallah, S. A., Coupled burgers equations governing polydispersive sedimentation; a lie symmetry approach, Results Phys., 16, 102967, 2020
[58] Bruzón, M. S.; Gandarias, M. L., Traveling wave solutions of the k(m, n) equation with generalized evolution, Math. Meth. Appl. Sci., 41, 5851-5857, 2018 · Zbl 1402.35241
[59] Ma, W. X.; Abdeljabbar, A.; Asaad, M. G., Wronskian and grammian solutions to a (3+1)-dimensional generalized KP equation, Appl.Math. Comput., 217, 10016-10023, 2011 · Zbl 1225.65098
[60] Wazwaz, A. M., Multiple-soliton solutions for a (3 + 1)- dimensional generalized KP equation, Commun. Nonlinear. Sci. Numer. Simul., 17, 491-495, 2012 · Zbl 1245.35104
[61] Wazwaz, A. M.; El-Tantawy, S., A new (3+1)-dimensional generalized kadomtsev-petviashvili equation, Nonlinear Dyn., 84, 1107-1112, 2016
[62] Ma, M. A.; Abdeljabbar, A., Solving the (3+1)-dimensional generalized KP and BKP equations by the multi exp function algorithm, Appl. Math. Comput., 218, 11871-11879, 2012 · Zbl 1280.35122
[63] Wazwaz, A. M.; El-Tantawy, S., Solving the (3+1)-dimensional KP-boussinesq and BKP-boussinesq equations by the simplified hirota’s method, Nonlinear Dyn., 88, 3017-3021, 2017
[64] Abramowitz, M.; Stegun, I., Handbook of mathematical functions, 1972, New York, Dover · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.