×

The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation. (English) Zbl 1082.65584

Summary: The nonlinear Klein-Gordon equation is used as a vehicle to employ the tanh method and the sine-cosine method to formally derive a number of travelling wave solutions. The study features a variety of solutions with distinct physical structures. The work shows that one method complements the other, and each method gives solutions of formal properties. The obtained solutions include compactons, solitons, solitary patterns, and periodic solutions.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems

Software:

MACSYMA
Full Text: DOI

References:

[1] Duncan, D. B., Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34, 5, 1742-1760 (1997) · Zbl 0889.65093
[2] Perring, J. K.; Skyrme, T. H., A model unified field equation, Nucl. Phys., 31, 550-555 (1962) · Zbl 0106.20105
[3] Ablowitz, M. J.; Herbst, B. M.; Schober, C., On the numerical solution of the Sine-Gordon equation, J. Comput. Phys., 126, 299-314 (1996) · Zbl 0866.65064
[4] Zabusky, N. J.; Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1965) · Zbl 1201.35174
[5] Wadati, M., Introduction to solitons, Pramana: J. Phys., 57, 5-6, 841-847 (2001)
[6] Wadati, M., The exact solution of the modified Kortweg-de Vries equation, J. Phys. Soc. Jpn., 32, 1681-1687 (1972)
[7] Fordy, A. P., Soliton Theory: A Survey of Results (1990), MUP: MUP Manchester
[8] Newell, A. C., Solitons in Mathematics and Physics (1985), SIAM: SIAM Philadelphia · Zbl 0565.35003
[9] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons (1984), Plenum: Plenum New York · Zbl 0598.35002
[10] Kivshar, Y. S.; Pelinovsky, D. E., Self-focusing and transverse instabilities of solitary waves, Phys. Rep., 331, 117-195 (2000)
[11] Kadomtsev, B. B.; Petviashvili, V. I., Sov. Phys. JETP, 39, 285-295 (1974)
[12] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. Phys. A, 23, 4805-4822 (1990) · Zbl 0719.35085
[13] Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelengths, Phys. Rev. Lett., 70, 5, 564-567 (1993) · Zbl 0952.35502
[14] Dusuel, S.; Michaux, P.; Remoissenet, M., From kinks to compactonlike kinks, Phys. Rev. E, 57, 2, 2320-2326 (1998)
[15] Ludu, A.; Draayer, J. P., Patterns on liquid surfaces: cnoidal waves, compactons and scaling, Physica D, 123, 82-91 (1998) · Zbl 0952.76008
[16] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[17] Malfliet, W., The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563-568 (1996) · Zbl 0942.35034
[18] Malfliet, W., The tanh method: II. Perturbation technique for conservative systems, Phys. Scr., 54, 569-575 (1996) · Zbl 0942.35035
[19] Wazwaz, A. M., The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 3, 713-723 (2004) · Zbl 1054.65106
[20] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[21] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m,n)\) equations, Chaos, Solitons Fractals, 13, 2, 321-330 (2002) · Zbl 1028.35131
[22] Wazwaz, A. M., Exact specific solutions with solitary patterns for the nonlinear dispersive \(K(m,n)\) equations, Chaos, Solitons Fractals, 13, 1, 161-170 (2001) · Zbl 1027.35115
[23] Wazwaz, A. M., General compactons solutions for the focusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 213-227 (2002) · Zbl 1027.35117
[24] Wazwaz, A. M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 229-244 (2002) · Zbl 1027.35118
[25] Wazwaz, A. M., Compactons dispersive structures for variants of the \(K(n,n)\) and the KP equations, Chaos, Solitons Fractals, 13, 5, 1053-1062 (2002) · Zbl 0997.35083
[26] Wazwaz, A. M., Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput., 139, 1, 37-54 (2003) · Zbl 1029.35200
[27] Wazwaz, A. M., A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl. Math. Comput., 135, 2-3, 399-409 (2003) · Zbl 1027.35120
[28] Wazwaz, A. M., A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl. Math. Comput., 135, 2-3, 324-411 (2003) · Zbl 1027.35121
[29] Wazwaz, A. M., Compactons in a class of nonlinear dispersive equations, Math. Comput. Modell., 37, 3/4, 333-341 (2003) · Zbl 1044.35078
[30] Wazwaz, A. M., Distinct variants of the KdV equation with compact and noncompact structures, Appl. Math. Comput., 150, 365-377 (2004) · Zbl 1039.35110
[31] Wazwaz, A. M., Variants of the generalized KdV equation with compact and noncompact structures, Comput. Math. Appl., 47, 583-591 (2004) · Zbl 1062.35120
[32] Wazwaz, A. M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos, Solitons Fractals, 22, 249-260 (2004) · Zbl 1062.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.