×

Semi-explicit integration of second order for weakly coupled poroelasticity. (English) Zbl 07837843

Summary: The paper investigates a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition.
Overall, the paper is good and I recommand for publication.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65L80 Numerical methods for differential-algebraic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L05 Geophysical solid mechanics
35A24 Methods of ordinary differential equations applied to PDEs

Software:

RODAS

References:

[1] Akrivis, G.; Crouzeix, M.; Makridakis, C., Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp., 67, 222, 457-477, 1998 · Zbl 0896.65066 · doi:10.1090/S0025-5718-98-00930-2
[2] Akrivis, G.; Lubich, C., Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math., 131, 713-735, 2015 · Zbl 1334.65124 · doi:10.1007/s00211-015-0702-0
[3] Altmann, R.; Chung, E.; Maier, R.; Peterseim, D.; Pun, SM, Computational multiscale methods for linear heterogeneous poroelasticity, J. Comput. Math., 38, 1, 41-57, 2020 · Zbl 1463.65284 · doi:10.4208/jcm.1902-m2018-0186
[4] Altmann, R.; Maier, R., A decoupling and linearizing discretization for poroelasticity with nonlinear permeability, SIAM J. Sci. Comput., 44, 3, B457-B478, 2022 · Zbl 1496.65153 · doi:10.1137/21M1413985
[5] Altmann, R.; Maier, R.; Unger, B., Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems, Math. Comp., 90, 329, 1089-1118, 2021 · Zbl 1466.65115 · doi:10.1090/mcom/3608
[6] Altmann, R., Zimmer, C.: On the smoothing property of linear delay partial differential equations. J. Math. Anal. Appl. 467(2), 916-934 (2018). doi:10.1016/j.jmaa.2018.07.049 · Zbl 1395.35058
[7] Armero, F.; Simo, JC, A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., 35, 4, 737-766, 1992 · Zbl 0784.73085 · doi:10.1002/nme.1620350408
[8] Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Oxford University Press, New York (2003). doi:10.1093/acprof:oso/9780198506546.001.0001 · Zbl 1038.65058
[9] Bellman, R.; Cooke, KL, Differential-difference equations, 1963, New York-London: Academic Press, New York-London · Zbl 0105.06402
[10] Biot, MA, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164, 1941 · JFM 67.0837.01 · doi:10.1063/1.1712886
[11] Biot, MA, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253, 1956 · Zbl 0071.41204 · doi:10.1063/1.1722351
[12] Chaabane, N.; Rivière, B., A sequential discontinuous Galerkin method for the coupling of flow and geomechanics, J. Sci. Comput., 74, 1, 375-395, 2018 · Zbl 1404.65162 · doi:10.1007/s10915-017-0443-6
[13] Chaabane, N.; Rivière, B., A splitting-based finite element method for the Biot poroelasticity system, Comput. Math. Appl., 75, 7, 2328-2337, 2018 · Zbl 1409.76057 · doi:10.1016/j.camwa.2017.12.009
[14] Ciarlet, PG, Mathematical elasticity, 1988, Amsterdam: North-Holland, Amsterdam · Zbl 0648.73014
[15] Crouzeix, M., Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math., 35, 3, 257-276, 1980 · Zbl 0419.65057 · doi:10.1007/BF01396412
[16] Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity. In: Analysis and design methods, pp. 113-171. Elsevier (1993)
[17] Ern, A.; Meunier, S., A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems, ESAIM: Math. Model. Numer. Anal., 43, 2, 353-375, 2009 · Zbl 1166.76036 · doi:10.1051/m2an:2008048
[18] Frank, J.; Hundsdorfer, W.; Verwer, J., On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25, 2, 193-205, 1997 · Zbl 0887.65094 · doi:10.1016/S0168-9274(97)00059-7
[19] Fu, G., A high-order HDG method for the Biot’s consolidation model, Comput. Math. Appl., 77, 1, 237-252, 2019 · Zbl 1442.65257 · doi:10.1016/j.camwa.2018.09.029
[20] Gu, K.; Kharitonov, VL; Chen, J., Stability of Time-Delay Systems, 2003, Boston: Birkhäuser, Boston · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[21] Hairer, E., Wanner, G.: Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, second edn. Springer-Verlag, Berlin (1996). doi:10.1007/978-3-642-05221-7. Stiff and differential-algebraic problems · Zbl 0859.65067
[22] Kim, J.; Tchelepi, HA; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1591-1606, 2011 · Zbl 1228.74101 · doi:10.1016/j.cma.2010.12.022
[23] Kunkel, P., Mehrmann, V.: Differential-algebraic equations. Analysis and numerical solution. European mathematical society, Zürich (2006). doi:10.4171/017 · Zbl 1095.34004
[24] Lee, JJ; Mardal, KA; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, 1, A1-A24, 2017 · Zbl 1381.76183 · doi:10.1137/15M1029473
[25] Mikelić, A.; Wheeler, MF, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461, 2013 · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[26] Mujahid, A.: Monolithic, non-iterative and iterative time discretization methods for linear coupled elliptic-parabolic systems. GAMM Archive for students 4(1) (2022). doi:10.14464/gammas.v4i1.500
[27] Showalter, RE, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340, 2000 · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[28] Storvik, E.; Both, JW; Kumar, K.; Nordbotten, JM; Radu, FA, On the optimization of the fixed-stress splitting for Biot’s equations, Int. J. Numer. Meth. Eng., 120, 2, 179-194, 2019 · Zbl 07859732 · doi:10.1002/nme.6130
[29] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, second edn. Springer series in computational mathematics. Springer Berlin, Heidelberg (2006). doi:10.1007/3-540-33122-0 · Zbl 1105.65102
[30] Trenn, S., Unger, B.: Delay regularity of differential-algebraic equations. In: 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, pp. 989-994 (2019). doi:10.1109/CDC40024.2019.9030146
[31] Unger, B.: Discontinuity propagation in delay differential-algebraic equations. Electron. J. Linear Algebr. 34, 582-601 (2018). doi:10.13001/1081-3810.3759 · Zbl 1417.34188
[32] Wheeler, MF; Gai, X., Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Numer. Meth. Part. D. E., 23, 4, 785-797, 2007 · Zbl 1115.74054 · doi:10.1002/num.20258
[33] Zeidler, E., Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators, 1990, New York: Springer-Verlag, New York · Zbl 0684.47029 · doi:10.1007/978-1-4612-0981-2
[34] Zoback, MD, Reservoir Geomechanics, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1270.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.