×

Implicit-explicit multistep finite element methods for nonlinear parabolic problems. (English) Zbl 0896.65066

The work focuses on the implicit-explicit multistep finite element method for nonlinear parabolic problems. Particularly, the following aspects are covered: the analysis of a simple one-step semi-explicit scheme of first-order accuracy, general multistep schemes of higher accuracy, the results of three applications: the Kuramoto-Sivashinsky equation and the Cahn-Hilliard equation in one dimension, and a class of reaction-diffusion equations in \(\mathbb{R}^s\), \(s= 2,3\).

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
35K55 Nonlinear parabolic equations
35K57 Reaction-diffusion equations
34A34 Nonlinear ordinary differential equations and systems

Software:

RODAS
Full Text: DOI

References:

[1] Georgios Akrivis, High-order finite element methods for the Kuramoto-Sivashinsky equation, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 157 – 183 (English, with English and French summaries). · Zbl 0842.76035
[2] S.M. Allen and J.W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085-1095.
[3] Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257 – 276 (French, with English summary). · Zbl 0419.65057 · doi:10.1007/BF01396412
[4] Michel Crouzeix and Pierre-Arnaud Raviart, Approximation des équations d’évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci. Paris Sér. A-B 28 (1976), no. 6, Aiv, A367 – A370 (French, with English summary). · Zbl 0361.65064
[5] Colin W. Cryer, A new class of highly-stable methods: \?\(_{0}\)-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 153 – 159. · Zbl 0265.65036
[6] Charles M. Elliott and Zheng Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339 – 357. · Zbl 0624.35048 · doi:10.1007/BF00251803
[7] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), no. 9, 1097 – 1123. · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[8] R. D. Grigorieff and J. Schroll, Über \?(\?)-stabile Verfahren hoher Konsistenzordnung, Computing 20 (1978), no. 4, 343 – 350 (German, with English summary). · Zbl 0395.65043 · doi:10.1007/BF02252382
[9] E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. · Zbl 0729.65051
[10] Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, vol. 19, Springer-Verlag, Berlin, 1984. · Zbl 0558.76051
[11] Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d’évolution paraboliques lorsque l’opérateur dépend du temps, RAIRO Anal. Numér. 13 (1979), no. 2, 119 – 137 (French, with English summary). · Zbl 0413.65066
[12] W.R. McKinney, Optimal error estimates for high order Runge-Kutta methods applied to evolutionary equations, Ph.D. thesis, University of Tennessee, Knoxville, 1989.
[13] Basil Nicolaenko and Bruno Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), no. 1-3, 391 – 395. · Zbl 0576.35058 · doi:10.1016/0167-2789(84)90543-8
[14] D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A 2 (1990), no. 3, 340 – 352. · Zbl 0704.76060 · doi:10.1063/1.857784
[15] Giuseppe Savaré, \?(\Theta )-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993), no. 3, 319 – 335. · Zbl 0791.65077 · doi:10.1007/BF01385755
[16] Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. · Zbl 0449.41004
[17] Eitan Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884 – 893. · Zbl 0606.35073 · doi:10.1137/0517063
[18] Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. · Zbl 0662.35001
[19] Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. · Zbl 0884.65097
[20] Miloš Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp. 29 (1975), 350 – 359.
[21] Miloš Zlámal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11 (1977), no. 1, 93 – 107, 113 (English, with French summary).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.