×

Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations. (English) Zbl 1334.65124

The paper presents a study on the stability and convergence of tie discretizations of quasi-linear parabolic equations With the abstract setting of the problem and stating some preliminaries, the existence and uniqueness of the several approximations in Hilbert spaces are discussed. The authors establish optimal order a priori error bounds for the various difference schemes by energy estimates.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K59 Quasilinear parabolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Software:

RODAS
Full Text: DOI

References:

[1] Akrivis, G.: Implicit-explicit multistep methods for nonlinear parabolic equations. Math. Comp. 82, 45-68 (2013) · Zbl 1266.65152 · doi:10.1090/S0025-5718-2012-02628-7
[2] Akrivis, G.: Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. (to appear) · Zbl 1312.65115
[3] Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521-541 (1999) · Zbl 0936.65118 · doi:10.1007/s002110050429
[4] Baiocchi, C., Crouzeix, M.: On the equivalence of A-stability and G-stability. Appl. Numer. Math. 5, 19-22 (1989) · Zbl 0671.65072 · doi:10.1016/0168-9274(89)90020-2
[5] Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257-276 (1980) · Zbl 0419.65057 · doi:10.1007/BF01396412
[6] Dahlquist, G.: G-stability is equivalent to A-stability. BIT 18, 384-401 (1978) · Zbl 0413.65057 · doi:10.1007/BF01932018
[7] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, v. 14, 2nd revised ed. Springer, Berlin (2002) · Zbl 1192.65097
[8] Lubich, C.: On the convergence of multistep methods for nonlinear stiff differential equations. Numer. Math. 58, 839-853 (1991). Erratum: Numer. Math. 61, 277-279 (1992) · Zbl 0729.65055 · doi:10.1007/BF01385657
[9] Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretisation of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33, 1365-1385 (2013) · Zbl 1401.65108 · doi:10.1093/imanum/drs044
[10] Lubich, C., Ostermann, A.: Runge-Kutta approximations of quasi-linear parabolic equations. Math. Comp. 64, 601-627 (1995) · Zbl 0832.65104 · doi:10.1090/S0025-5718-1995-1284670-0
[11] Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3, 377-423 (1981) · Zbl 0469.65051 · doi:10.1080/01630568108816097
[12] Savaré, G.: A \[(\Theta )\](Θ)-stable approximations of abstract Cauchy problems. Numer. Math. 65, 319-335 (1993) · Zbl 0791.65077 · doi:10.1007/BF01385755
[13] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006) · Zbl 1105.65102
[14] Zlámal, M.: Finite element methods for nonlinear parabolic equations. RAIRO 11, 93-107 (1977) · Zbl 0385.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.