×

Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems. (English) Zbl 07812616

Summary: Lagrangian multiforms provide a variational framework to describe integrable hierarchies. The case of Lagrangian 1-forms covers finite-dimensional integrable systems. We use the theory of Lie dialgebras introduced by Semenov-Tian-Shansky to construct a Lagrangian 1-form. Given a Lie dialgebra associated with a Lie algebra \(\mathfrak{g}\) and a collection \(H_k, k=1,\ldots, N\), of invariant functions on \(\mathfrak{g}^*\), we give a formula for a Lagrangian multiform describing the commuting flows for \(H_k\) on a coadjoint orbit in \(\mathfrak{g}^*\). We show that the Euler-Lagrange equations for our multiform produce the set of compatible equations in Lax form associated with the underlying \(r\)-matrix of the Lie dialgebra. We establish a structural result which relates the closure relation for our multiform to the Poisson involutivity of the Hamiltonians \(H_k\) and the so-called double zero on the Euler-Lagrange equations. The construction is extended to a general coadjoint orbit by using reduction from the free motion of the cotangent bundle of a Lie group. We illustrate the dialgebra construction of a Lagrangian multiform with the open Toda chain and the rational Gaudin model. The open Toda chain is built using two different Lie dialgebra structures on \(\mathfrak{sl}(N+1)\). The first one possesses a non-skew-symmetric \(r\)-matrix and falls within the Adler-Kostant-Symes scheme. The second one possesses a skew-symmetric \(r\)-matrix. In both cases, the connection with the well-known descriptions of the chain in Flaschka and canonical coordinates is provided.

MSC:

17B80 Applications of Lie algebras and superalgebras to integrable systems
17B08 Coadjoint orbits; nilpotent varieties
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics

References:

[1] Lobb, S.; Nijhoff, FW, Lagrangian multiforms and multidimensional consistency, J. Phys. A Math. Theor., 42, 45, (2009) · Zbl 1196.37117 · doi:10.1088/1751-8113/42/45/454013
[2] Nijhoff, FW, Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A, 297, 1, 49-58, (2002) · Zbl 0994.35105 · doi:10.1016/S0375-9601(02)00287-6
[3] Bobenko, AI; Suris, YB, Integrable systems on quad-graphs, Int. Math. Res. Not., 2002, 11, 573-611, (2002) · Zbl 1004.37053 · doi:10.1155/S1073792802110075
[4] Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete Systems and Integrability. Cambridge Texts in Applied Mathematics (Cambridge University Press, 2016). doi:10.1017/CBO9781107337411 · Zbl 1362.37130
[5] Yoo-Kong, S.; Lobb, S.; Nijhoff, FW, Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A Math. Theor., 44, 36, (2011) · Zbl 1226.82040 · doi:10.1088/1751-8113/44/36/365203
[6] Suris, YB, Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms, J. Geom. Mech., 5, 3, 365-379, (2013) · Zbl 1330.37057 · doi:10.3934/jgm.2013.5.365
[7] Petrera, M.; Suris, YB, Variational symmetries and pluri-Lagrangian systems in classical mechanics, J. Nonlinear Math. Phys., 24, 121-145, (2021) · Zbl 1421.70031 · doi:10.1080/14029251.2017.1418058
[8] Suris, Y.B., Vermeeren, M.: On the Lagrangian Structure of Integrable Hierarchies, pp. 347-378, Advances in Discrete Differential Geometry (Springer Berlin, Heidelberg, 2016) Eds.: Bobenko, A.I. doi:10.1007/978-3-662-50447-5_11 · Zbl 1408.37120
[9] Sleigh, D.; Nijhoff, FW; Caudrelier, V., A variational approach to Lax representations, J. Geom. Phys., 142, 66-79, (2019) · Zbl 1423.37059 · doi:10.1016/j.geomphys.2019.03.015
[10] Sleigh, D.; Nijhoff, FW; Caudrelier, V., Variational symmetries and Lagrangian multiforms, Lett. Math. Phys., 110, 805-826, (2020) · Zbl 1433.35327 · doi:10.1007/s11005-019-01240-5
[11] Caudrelier, V.; Stoppato, M., Hamiltonian multiform description of an integrable hierarchy, J. Math. Phys., 61, 12, (2020) · Zbl 1458.37067 · doi:10.1063/5.0012153
[12] Caudrelier, V.; Stoppato, M., Multiform description of the AKNS hierarchy and classical r-matrix, J. Phys. A Math. Theor., 54, 23, (2021) · Zbl 1519.70031 · doi:10.1088/1751-8121/abfac9
[13] Petrera, M.; Vermeeren, M., Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs, Eur. J. Math., 7, 741-765, (2021) · Zbl 1475.37072 · doi:10.1007/s40879-020-00436-7
[14] Caudrelier, V., Stoppato, M., Vicedo, B.: Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies. Commun. Math. Phys. 405, 12 (2024). doi:10.1007/s00220-023-04871-x · Zbl 1536.37063
[15] Sleigh, D.; Nijhoff, FW; Caudrelier, V., Lagrangian multiforms for Kadomtsev-Petviashvili (KP) and the Gelfand-Dickey hierarchy, Int. Math. Res. Not., 2023, 2, 1420-1460, (2021) · Zbl 1512.37085 · doi:10.1093/imrn/rnab288
[16] Nijhoff, F.W.: Lagrangian 3-form structure for the Darboux system and the KP hierarchy. Lett. Math. Phys. 113(1), pp. 27 (2f023). doi:10.1007/s11005-023-01641-7 · Zbl 1510.35008
[17] Sleigh, D.; Vermeeren, M., Semi-discrete Lagrangian 2-forms and the Toda hierarchy, J. Phys. A Math. Theor., 55, 47, (2022) · Zbl 1512.37086 · doi:10.1088/1751-8121/aca451
[18] Vermeeren, M., Continuum limits of pluri-Lagrangian systems, J. Integr. Syst., 4, 1, xyy020, (2019) · Zbl 1472.37068 · doi:10.1093/integr/xyy020
[19] Caudrelier, V.; Nijhoff, FW; Sleigh, D.; Vermeeren, M., Lagrangian multiforms on Lie groups and non-commuting flows, J. Geom. Phys., 187, (2023) · Zbl 1519.70017 · doi:10.1016/j.geomphys.2023.104807
[20] Nijhoff, F.W.: Integrable hierarchies, Lagrangian structures and non-commuting flows, pp. 150-181, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (World Scientific, Singapore, 1987) Eds.: Ablowitz, M.J., Fuchssteiner, B., Kruskal, M. doi:10.1142/0371 · Zbl 0736.35118
[21] Semenov-Tian-Shansky, M.A.: Integrable Systems: the r-matrix Approach. RIMS-1650, Kyoto University (2008). https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1650.pdf
[22] Adler, M., On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math., 50, 3, 219-248, (1978) · Zbl 0393.35058 · doi:10.1007/BF01410079
[23] Symes, WW, Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math., 59, 1, 13-51, (1978) · Zbl 0474.58009 · doi:10.1007/BF01390312
[24] Kostant, B., The solution to a generalized Toda lattice and representation theory, Adv. Math., 34, 3, 195-338, (1979) · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[25] Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems, pp. 116-225, Dynamical Systems VII: Integrable Systems Nonholonomic Dynamical Systems (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994) Eds.: Arnol’d, V.I., Novikov, S.P. doi:10.1007/978-3-662-06796-3_7 · Zbl 0795.00013
[26] Fehér, L.; Gábor, A., Adler-Kostant-Symes systems as Lagrangian Gauge theories, Phys. Lett. A, 301, 1, 58-64, (2002) · Zbl 0997.37029 · doi:10.1016/S0375-9601(02)00978-7
[27] Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2003). doi:10.1017/CBO9780511535024 · Zbl 1045.37033
[28] Kosmann-Schwarzbach, Y.: Lie bialgebras, poisson Lie groups and dressing transformations, pp. 104-170, Integrability of Nonlinear Systems (Springer Berlin Heidelberg, 1997) Eds.: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. doi:10.1007/BFb0113695 · Zbl 1078.37517
[29] Semenov-Tian-Shansky, M.A.: What is a classical r-matrix? Funct. Anal. Appl. 17(4), 259-272 (1983). doi:10.1007/BF01076717 · Zbl 0535.58031
[30] Adler, M., van Moerbeke, P., Vanhaecke, P.: Algebraic Integrability, Painlevé Geometry and Lie Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics (Springer Berlin, Heidelberg, 2004). doi:10.1007/978-3-662-05650-9 · Zbl 1083.37001
[31] Vermeeren, M.: Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. Open Comm. Nonl. Math. Phys. 1 (2021). doi:10.46298/ocnmp.7491 · Zbl 07888202
[32] Sleigh, D.: The Lagrangian multiform approach to integrable systems. PhD thesis, University of Leeds (2021). https://etheses.whiterose.ac.uk/30012/
[33] Skrypnyk, T., Elliptic Gaudin-type model in an external magnetic field and modified algebraic Bethe ansatz, Nucl. Phys. B, 988, (2023) · Zbl 1520.81091 · doi:10.1016/j.nuclphysb.2023.116102
[34] Zakharov, VE; Mikhailov, AV, Variational principle for equations integrable by the inverse problem method, Funct. Anal. Appl., 14, 1, 43-44, (1980) · Zbl 0473.35075 · doi:10.1007/BF01078417
[35] Vicedo, B.; Winstone, J., 3-Dimensional mixed BF theory and Hitchin’s integrable system, Lett. Math. Phys., 112, 4, 79, (2022) · Zbl 1502.70043 · doi:10.1007/s11005-022-01567-6
[36] Costello, K., Yamazaki, M.: Gauge Theory And Integrability, III (2019). arXiv:1908.02289
[37] Caudrelier, V.; Stoppato, M.; Vicedo, B., On the Zakharov-Mikhailov action: \(4d\) Chern-Simons origin and covariant Poisson algebra of the Lax connection, Lett. Math. Phys., 111, 3, 82, (2021) · Zbl 1477.70050 · doi:10.1007/s11005-021-01425-x
[38] Wiegmann, PB, Multivalued functionals and geometrical approach for quantization of relativistic particles and strings, Nucl. Phys. B, 323, 2, 311-329, (1989) · doi:10.1016/0550-3213(89)90144-2
[39] Alekseev, A.; Faddeev, L.; Shatashvili, S., Quantization of symplectic orbits of compact Lie groups by means of the functional integral, J. Geom. Phys., 5, 3, 391-406, (1988) · Zbl 0698.58025 · doi:10.1016/0393-0440(88)90031-9
[40] Alekseev, A.; Shatashvili, S., Path integral quantization of the coadjoint orbits of the virasoro group and 2-d gravity, Nucl. Phys. B, 323, 3, 719-733, (1989) · doi:10.1016/0550-3213(89)90130-2
[41] Aratyn, H., E. Nissimov, E., S. Pacheva, S., Zimerman, A.H.: Symplectic actions on coadjoint orbits. Phys. Lett. B 240(1), pp. 127-132 (1990). doi:10.1016/0370-2693(90)90420-B
[42] Vicedo, B., On integrable field theories as dihedral affine Gaudin models, Int. Math. Res. Not., 2020, 15, 4513-4601, (2018) · Zbl 1484.81057 · doi:10.1093/imrn/rny128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.