×

Multiform description of the AKNS hierarchy and classical \(r\)-matrix. (English) Zbl 1519.70031

Summary: In recent years, new properties of space-time duality in the Hamiltonian formalism of certain integrable classical field theories have been discovered and have led to their reformulation using ideas from covariant Hamiltonian field theory: in this sense, the covariant nature of their classical \(r\)-matrix structure was unravelled. Here, we solve the open question of extending these results to a whole hierarchy. We choose the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. To do so, we introduce for the first time a Lagrangian multiform for the entire AKNS hierarchy. We use it to construct explicitly the necessary objects introduced previously by us: a symplectic multiform, a multi-time Poisson bracket and a Hamiltonian multiform. Equipped with these, we prove the following results: (i) the Lax form containing the whole sequence of Lax matrices of the hierarchy possesses the rational classical \(r\)-matrix structure; (ii) the zero curvature equations of the AKNS hierarchy are multiform Hamilton equations associated to our Hamiltonian multiform and multi-time Poisson bracket; (iii) the Hamiltonian multiform provides a way to characterise the infinite set of conservation laws of the hierarchy reminiscent of the familiar criterion \(\{I, H\} = 0\) for a first integral \(I\).

MSC:

70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81R12 Groups and algebras in quantum theory and relations with integrable systems
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520 · doi:10.1103/physrevlett.19.1095
[2] Shabat, A.; Zakharov, V., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys - JETP, 34, 62 (1972)
[3] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068 · doi:10.1002/sapm1974534249
[4] Zakharov, V. E.; Faddeev, L. D., Korteweg-de Vries equation: a completely integrable Hamiltonian system, Functional Analysis and Its Applications, 5, 280-287 (1971) · Zbl 0257.35074 · doi:10.1007/bf01086739
[5] Zakharov, V. E.; Manakov, S. V., On the complete integrability of a nonlinear Schrodinger equation, Teor. Mat. Fiz., 19, 332-343 (1974) · Zbl 0298.35016 · doi:10.1007/bf01035568
[6] Sklyanin, E. K.; Sklyanin, E. K., Method of the inverse scattering problem and the nonlinear quantum Schrödinger equation, Sov. Phys. - Dokl.. Dokl. Akad. Nauk Ser. Fiz., 244, 1337-109 (1978) · Zbl 0636.58041
[7] Semenov-Tian-Shansky, M. A.; Semenov-Tian-Shansky, M. A., What is a classical r-matrix?, Funct. Anal. Appl.. Funkt. Anal. Pril., 17N4, 17-272 (1983) · Zbl 0535.58031 · doi:10.1007/bf01076717
[8] Drinfeld, V. G., Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. - Dokl., 27, 68-71 (1983) · Zbl 0526.58017
[9] Faddeev, L.; Takhtajan, L., Hamiltonian Methods in the Theory of Solitons (2007), New York: Springer, New York · Zbl 1111.37001
[10] Bowcock, P.; Corrigan, E.; Zambon, C., Classically integrable field theories with defects, Int. J. Mod. Phys. A, 19, 82-91 (2004) · Zbl 1080.81015 · doi:10.1142/s0217751x04020324
[11] Caudrelier, V., On a systematic approach to defects in classical integrable field theories, Int. J. Geomet. Methods Mod. Phys., 05, 1085-1108 (2008) · Zbl 1166.70017 · doi:10.1142/s0219887808003223
[12] Avan, J.; Doikou, A., Liouville integrable defects: the non-linear Schrödinger paradigm, J. High Energy Phys. (2012) · Zbl 1306.37066 · doi:10.1007/jhep01(2012)040
[13] Caudrelier, V.; Kundu, A., A multisymplectic approach to defects in integrable classical field theory, J. High Energy Phys. (2015) · Zbl 1388.81256 · doi:10.1007/jhep02(2015)088
[14] Caudrelier, V., Multisymplectic approach to integrable defects in the sine-Gordon model, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1321.35195 · doi:10.1088/1751-8113/48/19/195203
[15] Avan, J.; Caudrelier, V.; Doikou, A.; Kundu, A., Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality, Nucl. Phys. B, 902, 415-439 (2016) · Zbl 1332.37049 · doi:10.1016/j.nuclphysb.2015.11.024
[16] Avan, J.; Caudrelier, V., On the origin of dual Lax pairs and their r-matrix structure, J. Geom. Phys., 120, 106-128 (2017) · Zbl 1379.37117 · doi:10.1016/j.geomphys.2017.05.010
[17] Flaschka, H.; Newell, A. C.; Ratiu, T., Kac-Moody lie algebras and soliton equations, Phys. D, 9, 324-332 (1983) · Zbl 0643.35099 · doi:10.1016/0167-2789(83)90275-0
[18] De Donder, T., Théorie invariantive du calcul des variations (1930), Paris: Gauthier-Villars, Paris · JFM 57.1475.03
[19] Weyl, H., Geodesic fields in the calculus of variation for multiple integrals, Ann. Math., 36, 607-629 (1935) · Zbl 0013.12002 · doi:10.2307/1968645
[20] Hélein, F., Multisymplectic formalism and the covariant phase space, Variational Problems in Differential Geometry, 94-126 (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1254.53107
[21] Caudrelier, V.; Stoppato, M., A connection between the classical r-matrix formalism and covariant Hamiltonian field theory, J. Geom. Phys., 148 (2020) · Zbl 1451.81253 · doi:10.1016/j.geomphys.2019.103546
[22] Caudrelier, V.; Stoppato, M., Hamiltonian multiform description of an integrable hierarchy, J. Math. Phys., 61 (2020) · Zbl 1458.37067 · doi:10.1063/5.0012153
[23] Lobb, S.; Nijhoff, F., Lagrangian multiforms and multidimensional consistency, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1196.37117 · doi:10.1088/1751-8113/42/45/454013
[24] Lobb, S. B.; Nijhoff, F. W.; Quispel, G. R W., Lagrangian multiform structure for the lattice KP system, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1186.39005 · doi:10.1088/1751-8113/42/47/472002
[25] Lobb, S. B.; Nijhoff, F. W., Lagrangian multiform structure for the lattice Gel’fand-Dikii hierarchy, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1184.37056 · doi:10.1088/1751-8113/43/7/072003
[26] Bobenko, A. I.; Suris, Y. B., On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys., 92, 17-31 (2010) · Zbl 1379.70061 · doi:10.1007/s11005-010-0381-9
[27] Yoo-Kong, S.; Lobb, S.; Nijhoff, F., Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1226.82040 · doi:10.1088/1751-8113/44/36/365203
[28] Boll, R.; Petrera, M.; Suris, Y. B., What is integrability of discrete variational systems?, Proc. R. Soc. A, 470, 20130550 (2014) · Zbl 1365.37053 · doi:10.1098/rspa.2013.0550
[29] Boll, R.; Petrera, M.; Suris, Y. B., Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1310.37029 · doi:10.1088/1751-8113/48/8/085203
[30] Suris, Y. B., Variational formulation of commuting Hamiltonian ows: multi-time Lagrangian 1-forms, J. Geomet. Mech., 5, 365-379 (2013) · Zbl 1330.37057 · doi:10.3934/jgm.2013.5.365
[31] Petrera, M.; Suris, Y. B., Variational symmetries and pluri-Lagrangian systems in classical mechanics, J. Nonlinear Math. Phys., 24, 121-145 (2017) · Zbl 1421.70031 · doi:10.1080/14029251.2017.1418058
[32] Xenitidis, P.; Nijhoff, F.; Lobb, S., On the Lagrangian formulation of multidimensionally consistent systems, Proc. R. Soc. A, 467, 3295-3317 (2011) · Zbl 1239.39005 · doi:10.1098/rspa.2011.0124
[33] Suris, Y. B., Variational symmetries and pluri-Lagrangian systems, Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Armin Leutbecher’s 80th Birthday, 255-266 (2016), Singapore: World Scientific, Singapore · Zbl 1353.37137
[34] Suris, Y. B.; Vermeeren, M., On the Lagrangian structure of integrable hierarchies, Advances in Discrete Differential Geometry, 347-378 (2016), Berlin: Springer, Berlin · Zbl 1408.37120
[35] Vermeeren, M., Continuum limits of pluri-Lagrangian systems, Journal of Integrable Systems, 4, xyy020 (2019) · Zbl 1472.37068 · doi:10.1093/integr/xyy020
[36] Sleigh, D.; Nijhoff, F.; Caudrelier, V., A variational approach to Lax representations, J. Geom. Phys., 142, 66-79 (2019) · Zbl 1423.37059 · doi:10.1016/j.geomphys.2019.03.015
[37] Petrera, M.; Vermeeren, M., Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs, Eur. J. Math. (2020) · Zbl 1475.37072 · doi:10.1007/s40879-020-00436-7
[38] Sleigh, D.; Nijhoff, F.; Caudrelier, V., Variational symmetries and Lagrangian multiforms, Lett. Math. Phys., 110, 805-826 (2019) · Zbl 1433.35327 · doi:10.1007/s11005-019-01240-5
[39] Adler, M., On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries equation, Invent. Math., 50, 219-248 (1979) · Zbl 0393.35058 · doi:10.1007/bf01410079
[40] Kostant, B., The solution to a generalized Toda lattice and representation theory, Adv. Math., 34, 195-338 (1979) · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[41] Symes, W. W., Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math., 59, 13-51 (1980) · Zbl 0474.58009 · doi:10.1007/bf01390312
[42] Semenov-Tian-Shansky, M., Integrable Systems: The r-Matrix Approach (2008), Kyoto: Research Institute for Mathematical Sciences, Kyoto University, Kyoto
[43] Newell, A. C., Solitons in Mathematics and Physics (1985), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0565.35003
[44] Dickey, L. A., Soliton Equations and Hamiltonian Systems (2003), Singapore: World Scientific, Singapore · Zbl 1140.35012
[45] Vermeeren, M., Continuum limits of variational systems, PhD Thesis (2018), Berlin
[46] Zakharov, V. E.; Mikhailov, A. V., Variational principle for equations integrable by the inverse problem method, Funct. Anal. Appl., 14, 43-44 (1980) · Zbl 0473.35075 · doi:10.1007/bf01078417
[47] Nijhoff, F. W.; Ablowitz, M.; Fuchssteiner, B.; Kruskal, M., Integrable hierarchies, Lagrangian structures and non-commuting ows, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, 150-181 (1986), Singapore: World Scientific, Singapore · Zbl 0736.35118
[48] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1045.37033
[49] Forger, M.; Salles, M. O., On covariant Poisson brackets in classical field theory, J. Math. Phys., 56 (2015) · Zbl 1353.70060 · doi:10.1063/1.4932011
[50] Caudrelier, V.; Stoppato, M.; Vicedo, B., On the Zakharov-Mikhailov action: 4d Chern-Simons origin and covariant Poisson algebra of the Lax connection (2020)
[51] Sklyanin, E. K., Quantum version of the method of inverse scattering problem, J. Sov. Math., 19, 1546-1596 (1982) · Zbl 0497.35072 · doi:10.1007/bf01091462
[52] Vermeeren, M., Hamiltonian structures for integrable hierarchies of Lagrangian PDEs (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.