×

Yaglom limit for unimodal Lévy processes. (English) Zbl 07788719

In a nutshell, the authors ‘prove universality of the Yaglom limit of Lipschitz cones among all unimodal Lévy processes sufficiently close to the isotropic \(\alpha\)-stable Lévy process. (...) Yaglom limits describe the large-time limiting behaviour of processes conditioned not to become extinct or absorbed.’ As the authors point out, ‘Over the last years the interest in the existence of Yaglom limits and quasi-stationary distributions was steadily growing. This is due to the fact that the topic is mathematically challenging and in various applications it is natural to ask about the limiting behaviour conditional on non-extinction. However, so far the existence of the Yaglom limit for Lévy processes was studied mainly in the one-dimensional setting or in the finite volume setting.’ The result of this paper generalizes results of K. Bogdan et al. [Electron. J. Probab. 23, Paper No. 11, 19 p. (2018; Zbl 1390.31002)].

MSC:

60G51 Processes with independent increments; Lévy processes
60G18 Self-similar stochastic processes
60J35 Transition functions, generators and resolvents
60J50 Boundary theory for Markov processes

Citations:

Zbl 1390.31002

References:

[1] A. Asselah, P. A. Ferrari, P. Groisman and M. Jonckheere. Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 647-668. Digital Object Identifier: 10.1214/14-AIHP635 Google Scholar: Lookup Link MathSciNet: MR3498004 · Zbl 1342.60145 · doi:10.1214/14-AIHP635
[2] R. Bañuelos and K. Bogdan. Symmetric stable processes in cones. Potential Anal. 21 (2004) 263-288. Digital Object Identifier: 10.1023/B:POTA.0000033333.72236.dc Google Scholar: Lookup Link MathSciNet: MR2075671 · Zbl 1054.31002 · doi:10.1023/B:POTA.0000033333.72236.dc
[3] N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollett and P. G. Taylor. The quasi-stationary behavior of quasi-birth-and-death processes. Ann. Appl. Probab. 7 (1997) 134-155. Digital Object Identifier: 10.1214/aoap/1034625256 Google Scholar: Lookup Link MathSciNet: MR1428753 · Zbl 0883.60085 · doi:10.1214/aoap/1034625256
[4] N. G. Bean, M. M. O’Reilly and Z. Palmowski. Yaglom limit for stochastic fluid models. Adv. Appl. Probab. 53 (2021) 1-35. Digital Object Identifier: 10.1017/apr.2020.71 Google Scholar: Lookup Link MathSciNet: MR4322399 · Zbl 1522.60063 · doi:10.1017/apr.2020.71
[5] N. G. Bean, P. K. Pollett and P. G. Taylor. The quasistationary distributions of level-independent quasi-birth-and-death processes. Commun. Stat., Stoch. Models 14 (1998) 389-406. Special issue in honor of Marcel F. Neuts. Digital Object Identifier: 10.1080/15326349808807478 Google Scholar: Lookup Link MathSciNet: MR1617603 · Zbl 0933.60091 · doi:10.1080/15326349808807478
[6] N. G. Bean, P. K. Pollett and P. G. Taylor. Quasistationary distributions for level-dependent quasi-birth-and-death processes. Commun. Stat., Stoch. Models 16 (2000) 511-541. Digital Object Identifier: 10.1080/15326340008807602 Google Scholar: Lookup Link MathSciNet: MR1796345 · Zbl 0964.60074 · doi:10.1080/15326340008807602
[7] J. Bertoin. Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47 (1993) 17-35. Digital Object Identifier: 10.1016/0304-4149(93)90092-I Google Scholar: Lookup Link MathSciNet: MR1232850 · Zbl 0786.60101 · doi:10.1016/0304-4149(93)90092-I
[8] J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994) 2152-2167. Digital Object Identifier: 10.1214/aop/1176988497 Google Scholar: Lookup Link Euclid: euclid.aop/1176988497 zbMATH: 0834.60079 MathSciNet: MR1331218 · Zbl 0834.60079 · doi:10.1214/aop/1176988497
[9] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge University Press, Cambridge, 1989. MathSciNet: MR1015093 · Zbl 0667.26003
[10] K. Bogdan, T. Grzywny and M. Ryznar. Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38 (2010) 1901-1923. Digital Object Identifier: 10.1214/10-AOP532 Google Scholar: Lookup Link MathSciNet: MR2722789 · Zbl 1204.60074 · doi:10.1214/10-AOP532
[11] K. Bogdan, T. Grzywny and M. Ryznar. Dirichlet heat kernel for unimodal Lévy processes. Stochastic Process. Appl. 124 (2014) 3612-3650. Digital Object Identifier: 10.1016/j.spa.2014.06.001 Google Scholar: Lookup Link MathSciNet: MR3249349 · Zbl 1320.60112 · doi:10.1016/j.spa.2014.06.001
[12] K. Bogdan, T. Grzywny and M. Ryznar. Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266 (2014) 3543-3571. Digital Object Identifier: 10.1016/j.jfa.2014.01.007 Google Scholar: Lookup Link MathSciNet: MR3165234 · Zbl 1290.60002 · doi:10.1016/j.jfa.2014.01.007
[13] K. Bogdan, T. Grzywny and M. Ryznar. Barriers, exit time and survival probability for unimodal Lévy processes. Probab. Theory Related Fields 162 (2015) 155-198. Digital Object Identifier: 10.1007/s00440-014-0568-6 Google Scholar: Lookup Link MathSciNet: MR3350043 · Zbl 1317.31016 · doi:10.1007/s00440-014-0568-6
[14] K. Bogdan, T. Kumagai and M. Kwaśnicki. Boundary Harnack inequality for Markov processes with jumps. Trans. Amer. Math. Soc. 367 (2015) 477-517. Digital Object Identifier: 10.1090/S0002-9947-2014-06127-8 Google Scholar: Lookup Link MathSciNet: MR3271268 · Zbl 1309.60080 · doi:10.1090/S0002-9947-2014-06127-8
[15] K. Bogdan, Z. Palmowski and L. Wang. Yaglom limit for stable processes in cones. Electron. J. Probab. 23 (2018) 1-19. Digital Object Identifier: 10.1214/18-EJP133 Google Scholar: Lookup Link MathSciNet: MR3771748 · Zbl 1390.31002 · doi:10.1214/18-EJP133
[16] L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39-54. Digital Object Identifier: 10.1016/S0304-4149(96)00081-6 Google Scholar: Lookup Link MathSciNet: MR1419491 · Zbl 0879.60072 · doi:10.1016/S0304-4149(96)00081-6
[17] L. Chaumont and R. A. Doney. On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 (28) (2005) 948-961. Digital Object Identifier: 10.1214/EJP.v10-261 Google Scholar: Lookup Link MathSciNet: MR2164035 zbMATH: 1109.60039 · Zbl 1109.60039 · doi:10.1214/EJP.v10-261
[18] Z.-Q. Chen, P. Kim and R. Song. Dirichlet heat kernel estimates for rotationally symmetric Lévy processes. Proc. Lond. Math. Soc. (3) 109 (2014) 90-120. Digital Object Identifier: 10.1112/plms/pdt068 Google Scholar: Lookup Link MathSciNet: MR3237737 · Zbl 1304.60080 · doi:10.1112/plms/pdt068
[19] W. Cygan, T. Grzywny and B. Trojan. Asymptotic behavior of densities of unimodal convolution semigroups. Trans. Amer. Math. Soc. 369 (2017) 5623-5644. Digital Object Identifier: 10.1090/tran/6830 Google Scholar: Lookup Link MathSciNet: MR3646773 · Zbl 1370.60060 · doi:10.1090/tran/6830
[20] I. Czarna and Z. Palmowski. Parisian quasi-stationary distributions for asymmetric Lévy processes. Statist. Probab. Lett. 127 (2017) 75-84. Digital Object Identifier: 10.1016/j.spl.2017.03.011 Google Scholar: Lookup Link MathSciNet: MR3648297 · Zbl 1379.60052 · doi:10.1016/j.spl.2017.03.011
[21] E. B. Dynkin. Markov Processes. Vols. I, II. Die Grundlehren der Mathematischen Wissenschaften 121, 122. Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MathSciNet: MR0193671 · Zbl 0132.37901
[22] P. A. Ferrari, H. Kesten, S. Martinez and P. Picco. Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Probab. 23 (1995) 501-521. MathSciNet: MR1334159 · Zbl 0827.60061
[23] P. A. Ferrari and N. Marić. Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electron. J. Probab. 12 (24) (2007) 684-702. Digital Object Identifier: 10.1214/EJP.v12-415 Google Scholar: Lookup Link MathSciNet: MR2318407 · Zbl 1127.60088 · doi:10.1214/EJP.v12-415
[24] D. C. Flaspohler and P. T. Holmes. Additional quasi-stationary distributions for semi-Markov processes. J. Appl. Probab. 9 (1972) 671-676. Digital Object Identifier: 10.2307/3212336 Google Scholar: Lookup Link MathSciNet: MR0346932 · Zbl 0241.60080 · doi:10.2307/3212336
[25] I. I. Gihman and A. V. Skorohod. The Theory of Stochastic Processes. I, english edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 210. Springer-Verlag, Berlin-New York, 1980. Translated from the Russian by Samuel Kotz. MathSciNet: MR0636254 · Zbl 0531.60001
[26] L. M. Graves. The Theory of Functions of Real Variables. McGraw-Hill Book Co., Inc., New York, 1946. MathSciNet: MR0018708 · Zbl 0063.01720
[27] T. Grzywny. On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes. Potential Anal. 41 (2014) 1-29. Digital Object Identifier: 10.1007/s11118-013-9360-y Google Scholar: Lookup Link MathSciNet: MR3225805 · Zbl 1302.60109 · doi:10.1007/s11118-013-9360-y
[28] T. Grzywny and M. Kwaśnicki. Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes. Stochastic Process. Appl. 128 (2018) 1-38. Digital Object Identifier: 10.1016/j.spa.2017.04.004 Google Scholar: Lookup Link MathSciNet: MR3729529 · Zbl 1386.60265 · doi:10.1016/j.spa.2017.04.004
[29] T. Grzywny, Ł. Leżaj and M. Miśta. Hitting probabilities for Lévy processes on the real line. ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021) 727-760. Digital Object Identifier: 10.30757/alea.v18-27 Google Scholar: Lookup Link MathSciNet: MR4243514 · Zbl 1469.60146 · doi:10.30757/alea.v18-27
[30] T. Grzywny and M. Ryznar. Potential theory of one-dimensional geometric stable processes. Colloq. Math. 129 (2012) 7-40. Digital Object Identifier: 10.4064/cm129-1-2 Google Scholar: Lookup Link MathSciNet: MR3007664 · Zbl 1276.60083 · doi:10.4064/cm129-1-2
[31] T. Grzywny, M. Ryznar and B. Trojan. Asymptotic behaviour and estimates of slowly varying convolution semigroups. Int. Math. Res. Not. IMRN 23 (2019) 7193-7258. Digital Object Identifier: 10.1093/imrn/rnx324 Google Scholar: Lookup Link MathSciNet: MR4039012 · Zbl 1448.60161 · doi:10.1093/imrn/rnx324
[32] T. Grzywny and K. Szczypkowski. Lévy processes: Concentration function and heat kernel bounds. Bernoulli 26 (2020) 3191-3223. Digital Object Identifier: 10.3150/20-BEJ1220 Google Scholar: Lookup Link MathSciNet: MR4140542 · Zbl 1469.60147 · doi:10.3150/20-BEJ1220
[33] T. Grzywny and K. Szczypkowski. Estimates of heat kernels of non-symmetric Lévy processes. Forum Math. 33 (2021) 1207-1236. Digital Object Identifier: 10.1515/forum-2020-0364 Google Scholar: Lookup Link MathSciNet: MR4308627 · Zbl 1496.60093 · doi:10.1515/forum-2020-0364
[34] B. Haas and V. Rivero. Quasi-stationary distributions and Yaglom limits of self-similar Markov processes. Stochastic Process. Appl. 122 (2012) 4054-4095. Digital Object Identifier: 10.1016/j.spa.2012.08.006 Google Scholar: Lookup Link MathSciNet: MR2971725 · Zbl 1267.60038 · doi:10.1016/j.spa.2012.08.006
[35] S. C. Harris, E. Horton, A. E. Kyprianou and M. Wang. Yaglom limit for critical nonlocal branching Markov processes. Ann. Probab. 50 (6) (2022) 2373-2408. Digital Object Identifier: 10.1214/22-AOP1585 Google Scholar: Lookup Link · Zbl 1505.82063 · doi:10.1214/22-AOP1585
[36] D. L. Iglehart. Random walks with negative drift conditioned to stay positive. J. Appl. Probab. 11 (1974) 742-751. Digital Object Identifier: 10.2307/3212557 Google Scholar: Lookup Link MathSciNet: MR0368168 · Zbl 0302.60038 · doi:10.2307/3212557
[37] S. D. Jacka and G. O. Roberts. Weak convergence of conditioned processes on a countable state space. J. Appl. Probab. 32 (1995) 902-916. Digital Object Identifier: 10.2307/3215203 Google Scholar: Lookup Link MathSciNet: MR1363332 · Zbl 0839.60069 · doi:10.2307/3215203
[38] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 1987. Digital Object Identifier: 10.1007/978-3-662-02514-7 Google Scholar: Lookup Link MathSciNet: MR0959133 · Zbl 0635.60021 · doi:10.1007/978-3-662-02514-7
[39] V. Knopova and R. L. Schilling. A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 (2013) 125-149. Digital Object Identifier: 10.1515/form.2011.108 Google Scholar: Lookup Link MathSciNet: MR3010850 · Zbl 1269.60050 · doi:10.1515/form.2011.108
[40] T. Kulczycki and M. Ryznar. Gradient estimates of harmonic functions and transition densities for Lévy processes. Trans. Amer. Math. Soc. 368 (2016) 281-318. Digital Object Identifier: 10.1090/tran/6333 Google Scholar: Lookup Link MathSciNet: MR3413864 · Zbl 1336.31012 · doi:10.1090/tran/6333
[41] M. Kwaśnicki. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20 (2017) 7-51. Digital Object Identifier: 10.1515/fca-2017-0002 Google Scholar: Lookup Link MathSciNet: MR3613319 · Zbl 1375.47038 · doi:10.1515/fca-2017-0002
[42] M. Kwaśnicki and T. Juszczyszyn. Martin kernels for Markov processes with jumps. Potential Anal. 47 (2017) 313-335. Digital Object Identifier: 10.1007/s11118-017-9616-z Google Scholar: Lookup Link MathSciNet: MR3713580 · Zbl 1380.31008 · doi:10.1007/s11118-017-9616-z
[43] A. E. Kyprianou and Z. Palmowski. Quasi-stationary distributions for Lévy processes. Bernoulli 12 (2006) 571-581. Digital Object Identifier: 10.3150/bj/1155735927 Google Scholar: Lookup Link MathSciNet: MR2248228 · Zbl 1130.60054 · doi:10.3150/bj/1155735927
[44] E. K. Kyprianou. On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals. J. Appl. Probab. 8 (1971) 494-507. Digital Object Identifier: 10.2307/3212173 Google Scholar: Lookup Link MathSciNet: MR0292201 · Zbl 0234.60121 · doi:10.2307/3212173
[45] A. Lambert. Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12 (14) (2007) 420-446. Digital Object Identifier: 10.1214/EJP.v12-402 Google Scholar: Lookup Link MathSciNet: MR2299923 · Zbl 1127.60082 · doi:10.1214/EJP.v12-402
[46] M. Mandjes, Z. Palmowski and T. Rolski. Quasi-stationary workload in a Lévy-driven storage system. Stoch. Models 28 (2012) 413-432. Digital Object Identifier: 10.1080/15326349.2012.699753 Google Scholar: Lookup Link MathSciNet: MR2959448 · Zbl 1260.90020 · doi:10.1080/15326349.2012.699753
[47] S. Martínez and J. San Martín. Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (1994) 911-920. Digital Object Identifier: 10.1017/s0021900200099447 Google Scholar: Lookup Link MathSciNet: MR1303922 · Zbl 0818.60071 · doi:10.1017/s0021900200099447
[48] Z. Palmowski and M. Vlasiou. Speed of convergence to the quasi-stationary distribution for Lévy input fluid queues. Queueing Syst. 96 (2020) 153-167. Digital Object Identifier: 10.1007/s11134-020-09664-w Google Scholar: Lookup Link MathSciNet: MR4171931 · Zbl 1461.60031 · doi:10.1007/s11134-020-09664-w
[49] W. E. Pruitt. The growth of random walks and Lévy processes. Ann. Probab. 9 (1981) 948-956. MathSciNet: MR0632968 · Zbl 0477.60033
[50] Y.-X. Ren, R. Song and Z. Sun. A 2-spine decomposition of the critical Galton-Watson tree and a probabilistic proof of Yaglom’s theorem. Electron. Commun. Probab. 23 (2018) Paper No. 42, 12. Digital Object Identifier: 10.1214/18-ECP143 Google Scholar: Lookup Link MathSciNet: MR3841403 · Zbl 1394.60089 · doi:10.1214/18-ECP143
[51] Y.-X. Ren, R. Song and Z. Sun. Limit theorems for a class of critical superprocesses with stable branching. Stochastic Process. Appl. 130 (2020) 4358-4391. Digital Object Identifier: 10.1016/j.spa.2020.01.001 Google Scholar: Lookup Link MathSciNet: MR4102269 · Zbl 1434.60235 · doi:10.1016/j.spa.2020.01.001
[52] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original, Revised by the author. MathSciNet: MR1739520
[53] R. L. Schilling. Measures, Integrals and Martingales, 2nd edition. Cambridge University Press, Cambridge, 2017. MathSciNet: MR3644418 · Zbl 1360.28001
[54] E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Probab. 3 (1966) 403-434. Digital Object Identifier: 10.2307/3212128 Google Scholar: Lookup Link MathSciNet: MR0207047 zbMATH: 0147.36603 · Zbl 0147.36603 · doi:10.2307/3212128
[55] H. Šikić, R. Song and Z. Vondraček. Potential theory of geometric stable processes. Probab. Theory Related Fields 135 (2006) 547-575. Digital Object Identifier: 10.1007/s00440-005-0470-3 Google Scholar: Lookup Link MathSciNet: MR2240700 · Zbl 1099.60051 · doi:10.1007/s00440-005-0470-3
[56] P. Sztonyk. On harmonic measure for Lévy processes. Probab. Math. Statist. 20 (2000) 383-390. MathSciNet: MR1825650 · Zbl 0991.60067
[57] R. L. Tweedie. Quasi-stationary distributions for Markov chains on a general state space. J. Appl. Probab. 11 (1974) 726-741. Digital Object Identifier: 10.1017/s0021900200118169 Google Scholar: Lookup Link MathSciNet: MR0443090 · Zbl 0309.60040 · doi:10.1017/s0021900200118169
[58] E. A. van Doorn. Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. in Appl. Probab. 23 (1991) 683-700. Digital Object Identifier: 10.2307/1427670 Google Scholar: Lookup Link MathSciNet: MR1133722 · Zbl 0736.60076 · doi:10.2307/1427670
[59] E. A. van Doorn and P. K. Pollett. Quasi-stationary distributions for discrete-state models. European J. Oper. Res. 230 (2013) 1-14. Digital Object Identifier: 10.1016/j.ejor.2013.01.032 Google Scholar: Lookup Link MathSciNet: MR3063313 zbMATH: 1317.60093 · Zbl 1317.60093 · doi:10.1016/j.ejor.2013.01.032
[60] A. M. Yaglom. Certain limit theorems of the theory of branching random processes. Dokl. Akad. Nauk SSSR 56 (1947) 795-798. MathSciNet: MR0022045
[61] J. Zhang, S. Li and R. Song. Quasi-stationarity and quasi-ergodicity of general Markov processes. Sci. China Math. 57 (2014) 2013-2024. Digital Object Identifier: 10.1007/s11425-014-4835-x Google Scholar: Lookup Link MathSciNet: MR3247530 zbMATH: 1309.60078 · Zbl 1309.60078 · doi:10.1007/s11425-014-4835-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.