×

Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. (English) Zbl 1204.60074

The main result of the paper gives the following sharp two-sided estimate for the heat kernel of the fractional Laplacian \((-\Delta )^{\alpha /2}\), \(0<\alpha <2\), with Dirichlet condition on the boundary: \[ C^ {-1} P^ {x} (\tau _ {D} > t) P^ {y} (\tau _ {D} > t) \leq \frac{p_ {D} (t, x, y)}{p(t, x, y)} \leq C P^ {x} (\tau _ {D} > t) P^ {y} (\tau _ {D} > t) \] where \(0 < t \leq 1\), \(x, y \in D\), \(C=C(\alpha , D)\) is a constant and \(D\) is a more general type of domain than the case of \(C^{1,1}\) domains, which was treated by Z.-Q. Chen, P. Kim and R. Song, [J. Eur. Math. Soc. (JEMS) 12, No. 5, 1307–1329 (2010; Zbl 1203.60114)].

MSC:

60J35 Transition functions, generators and resolvents
60J50 Boundary theory for Markov processes
60J75 Jump processes (MSC2010)
31B25 Boundary behavior of harmonic functions in higher dimensions

Citations:

Zbl 1203.60114

References:

[1] Bañuelos, R. and Bogdan, K. (2004). Symmetric stable processes in cones. Potential Anal. 21 263-288. · Zbl 1054.31002 · doi:10.1023/B:POTA.0000033333.72236.dc
[2] Bañuelos, R. and Kulczycki, T. (2008). Trace estimates for stable processes. Probab. Theory Related Fields 142 313-338. · Zbl 1184.60012 · doi:10.1007/s00440-007-0106-x
[3] Barlow, M. T., Grigor’yan, A. and Kumagai, T. (2009). Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 135-157. · Zbl 1158.60039 · doi:10.1515/CRELLE.2009.005
[4] Blumenthal, R. M. and Getoor, R. K. (1960). Some theorems on stable processes. Trans. Amer. Math. Soc. 95 263-273. JSTOR: · Zbl 0107.12401 · doi:10.2307/1993291
[5] Blumenthal, R. M., Getoor, R. K. and Ray, D. B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99 540-554. JSTOR: · Zbl 0118.13005 · doi:10.2307/1993561
[6] Bogdan, K. (2000). Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243 326-337. · Zbl 0971.31005 · doi:10.1006/jmaa.1999.6673
[7] Bogdan, K. and Byczkowski, T. (1999). Potential theory for the \alpha -stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133 53-92. · Zbl 0923.31003
[8] Bogdan, K. and Byczkowski, T. (2000). Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 293-335. · Zbl 0996.31003
[9] Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R. and Vondraček, Z. (2009). Potential Analysis of Stable Processes and Its Extensions (P. Graczyk and A. Stos, eds.). Lecture Notes in Math. 1980 . Springer, Berlin.
[10] Bogdan, K. and Grzywny, T. (2010). Heat kernel of fractional Laplacian in cones. Colloq. Math. 118 365-377. · Zbl 1196.60137 · doi:10.4064/cm118-2-1
[11] Bogdan, K., Grzywny, T. and Ryznar, M. (2009). Heat kernel estimates for the fractional Laplacian. Preprint. Available at . · Zbl 1204.60074
[12] Bogdan, K., Hansen, W. and Jakubowski, T. (2008). Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189 235-254. · Zbl 1161.47009 · doi:10.4064/sm189-3-3
[13] Bogdan, K. and Jakubowski, T. (2007). Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271 179-198. · Zbl 1129.47033 · doi:10.1007/s00220-006-0178-y
[14] Bogdan, K., Kulczycki, T. and Kwaśnicki, M. (2008). Estimates and structure of \alpha -harmonic functions. Probab. Theory Related Fields 140 345-381. · Zbl 1146.31004 · doi:10.1007/s00440-007-0067-0
[15] Bogdan, K., Kulczycki, T. and Nowak, A. (2002). Gradient estimates for harmonic and q -harmonic functions of symmetric stable processes. Illinois J. Math. 46 541-556. · Zbl 1037.31007
[16] Bogdan, K., Stós, A. and Sztonyk, P. (2003). Harnack inequality for stable processes on d -sets. Studia Math. 158 163-198. · Zbl 1031.60070 · doi:10.4064/sm158-2-5
[17] Bogdan, K. and Sztonyk, P. (2007). Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian. Studia Math. 181 101-123. · Zbl 1223.47038 · doi:10.4064/sm181-2-1
[18] Bogdan, K. and Żak, T. (2006). On Kelvin transformation. J. Theoret. Probab. 19 89-120. · Zbl 1105.60057 · doi:10.1007/s10959-006-0003-8
[19] Chen, Z. Q., Kim, P. and Song, R. (2010). Heat kernel estimates for Dirichlet fractional Laplacian. J. European Math. Soc. · Zbl 1190.60068 · doi:10.1007/s00440-008-0193-3
[20] Chen, Z.-Q. and Kumagai, T. (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 277-317. · Zbl 1131.60076 · doi:10.1007/s00440-007-0070-5
[21] Chen, Z.-Q. and Song, R. (1998). Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312 465-501. · Zbl 0918.60068 · doi:10.1007/s002080050232
[22] Chen, Z.-Q. and Tokle, J. (2009). Global heat kernel estimates for fractional Laplacians in unbounded open sets. Probab. Theory Related Fields . DOI: .
[23] Grigor’yan, A. and Hu, J. (2008). Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174 81-126. · Zbl 1154.47034 · doi:10.1007/s00222-008-0135-9
[24] Grzywny, T. and Ryznar, M. (2007). Estimates of Green functions for some perturbations of fractional Laplacian. Illinois J. Math. 51 1409-1438. · Zbl 1152.60060
[25] Grzywny, T. and Ryznar, M. (2008). Two-sided optimal bounds for Green functions of half-spaces for relativistic \alpha -stable process. Potential Anal. 28 201-239. · Zbl 1146.60059 · doi:10.1007/s11118-007-9071-3
[26] Hansen, W. (2006). Global comparison of perturbed Green functions. Math. Ann. 334 643-678. · Zbl 1123.31001 · doi:10.1007/s00208-005-0719-2
[27] Ikeda, N. and Watanabe, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79-95. · Zbl 0118.13401
[28] Jakubowski, T. (2002). The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Statist. 22 419-441. · Zbl 1035.60046
[29] Kulczycki, T. (1997). Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17 339-364. · Zbl 0903.60063
[30] Kulczycki, T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish Acad. Sci. Math. 46 325-334. · Zbl 0917.60071
[31] Kulczycki, T., Kwaśnicki, M., Małecki, J. and Stós, A. (2009). Spectral properties of the Cauchy process on half-line and interval. Proc. London Math. Soc. DOI: .
[32] Kulczycki, T. and Siudeja, B. (2006). Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes. Trans. Amer. Math. Soc. 358 5025-5057 (electronic). · Zbl 1112.47034 · doi:10.1090/S0002-9947-06-03931-6
[33] Kwaśnicki, M. (2009). Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31 57-77. · Zbl 1180.47031 · doi:10.1007/s11118-009-9125-9
[34] Luks, T. (2009). Harmonic Hardy spaces on smooth domains. Preprint. Available at .
[35] Michalik, K. (2006). Sharp estimates of the Green function, the Poisson kernel and the Martin kernel of cones for symmetric stable processes. Hiroshima Math. J. 36 1-21. · Zbl 1103.31003
[36] Rao, M., Song, R. and Vondraček, Z. (2006). Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Anal. 25 1-27. · Zbl 1107.60042 · doi:10.1007/s11118-005-9003-z
[37] Riesz, M. (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged . 9 1-42. · Zbl 0018.40704
[38] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001
[39] Siudeja, B. (2006). Symmetric stable processes on unbounded domains. Potential Anal. 25 371-386. · Zbl 1111.31004 · doi:10.1007/s11118-006-9022-4
[40] Song, R. and Wu, J.-M. (1999). Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168 403-427. · Zbl 0945.31006 · doi:10.1006/jfan.1999.3470
[41] Varopoulos, N. T. (2003). Gaussian estimates in Lipschitz domains. Canad. J. Math. 55 401-431. · Zbl 1042.58013 · doi:10.4153/CJM-2003-018-9
[42] Zhang, Q. S. (2002). The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differential Equations 182 416-430. · Zbl 1002.35052 · doi:10.1006/jdeq.2001.4112
[43] Zhao, Z. X. (1986). Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116 309-334. · Zbl 0608.35012 · doi:10.1016/S0022-247X(86)80001-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.