×

Asymptotic behavior of densities of unimodal convolution semigroups. (English) Zbl 1370.60060

Authors’ abstract: We prove the asymptotic formulas for the densities of isotropic unimodal convolution semigroups of probability measures on \(\mathbb{R}^{d}\) under the assumption that its Lévy-Khintchine exponent is regularly varying of index between \(0\) and \(2\).

MSC:

60F99 Limit theorems in probability theory
60J75 Jump processes (MSC2010)
47D06 One-parameter semigroups and linear evolution equations
60G51 Processes with independent increments; Lévy processes
60J65 Brownian motion
44A10 Laplace transform
46F12 Integral transforms in distribution spaces

References:

[1] Ben_unpublished A. Bendikov, A counterexample to the ultracontractivity property of Markov semigroups, unpublished manuscript, 2005.
[2] Bendikov, A., Asymptotic formulas for symmetric stable semigroups, Exposition. Math., 12, 4, 381-384 (1994) · Zbl 0810.60070
[3] bct A. Bendikov, W. Cygan, and B. Trojan, Asymptotic formula for subordinated random walks, Stochastic Process. Appl. (2017), DOI 10.1016/j.spa.2017.02.008. · Zbl 1395.60050
[4] Bendikov, A.; Saloff-Coste, L., Random walks on groups and discrete subordination, Math. Nachr., 285, 5-6, 580-605 (2012) · Zbl 1251.60004 · doi:10.1002/mana.201000059
[5] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular variation, Encyclopedia of Mathematics and its Applications 27, xx+494 pp. (1989), Cambridge University Press, Cambridge · Zbl 0667.26003
[6] Blumenthal, R. M.; Getoor, R. K., Some theorems on stable processes, Trans. Amer. Math. Soc., 95, 263-273 (1960) · Zbl 0107.12401
[7] Bogdan, Krzysztof; Grzywny, Tomasz; Ryznar, Micha{\l }, Density and tails of unimodal convolution semigroups, J. Funct. Anal., 266, 6, 3543-3571 (2014) · Zbl 1290.60002 · doi:10.1016/j.jfa.2014.01.007
[8] Drasin, David; Shea, Daniel F., Convolution inequalities, regular variation and exceptional sets, J. Analyse Math., 29, 232-293 (1976) · Zbl 0343.30013
[9] Dziuba{\'n}ski, Jacek, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields, 87, 4, 459-467 (1991) · Zbl 0695.60013 · doi:10.1007/BF01304275
[10] Figueroa-L{\'o}pez, Jos{\'e} E.; Houdr{\'e}, Christian, Small-time expansions for the transition distributions of L\'evy processes, Stochastic Process. Appl., 119, 11, 3862-3889 (2009) · Zbl 1179.60026 · doi:10.1016/j.spa.2009.09.002
[11] G{\l }owacki, Pawe{\l }, Stable semigroups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math., 83, 3, 557-582 (1986) · Zbl 0595.43006 · doi:10.1007/BF01394423
[12] Grzywny, Tomasz, On Harnack inequality and H\`“older regularity for isotropic unimodal L\'”evy processes, Potential Anal., 41, 1, 1-29 (2014) · Zbl 1302.60109 · doi:10.1007/s11118-013-9360-y
[13] grt T. Grzywny, M. Ryznar, and B. Trojan, Asymptotic behaviour and estimates of slowly varying convolution semigroups, arXiv:1606.04178. · Zbl 1448.60161
[14] WHoh W. Hoh, Pseudo differential operators generating Markov processes, Habilitationsschrift, Universit\"at Bielefeld, 1998.
[15] Ishikawa, Yasushi, Asymptotic behavior of the transition density for jump type processes in small time, Tohoku Math. J. (2), 46, 4, 443-456 (1994) · Zbl 0818.60074 · doi:10.2748/tmj/1178225674
[16] Knopova, Viktorya; Kulik, Alexey M., Exact asymptotic for distribution densities of L\'evy functionals, Electron. J. Probab., 16, no. 52, 1394-1433 (2011) · Zbl 1245.60051 · doi:10.1214/EJP.v16-909
[17] Knopova, Victoria; Schilling, Ren{\'e} L., A note on the existence of transition probability densities of L\'evy processes, Forum Math., 25, 1, 125-149 (2013) · Zbl 1269.60050 · doi:10.1515/form.2011.108
[18] MR941977 R. L\'eandre, Densit\'e en temps petit d’un processus de sauts, S\'eminaire de Probabilit\'es, XXI, Lecture Notes in Math., vol. 1247, Springer, Berlin, 1987, 81-99. · Zbl 0616.60078
[19] Orey, Steven, Strong ratio limit property, Bull. Amer. Math. Soc., 67, 571-574 (1961) · Zbl 0109.11801
[20] Polya1 G. P\'olya, On the zeros of an integral function represented by Fourier’s integral, Messenger of Math. 52 (1923), 185-188. · JFM 49.0219.02
[21] pot H.S.A. Potter, The mean values of certain Dirichlet series, II, P. Lond. Math. Soc. 2 (1942), no. 1, 1-19. · Zbl 0025.26302
[22] Pruitt, William E., Strong ratio limit property for \(R\)-recurrent Markov chains, Proc. Amer. Math. Soc., 16, 196-200 (1965) · Zbl 0131.16603
[23] Rao, Murali; Song, Renming; Vondra{\v{c}}ek, Zoran, Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., 25, 1, 1-27 (2006) · Zbl 1107.60042 · doi:10.1007/s11118-005-9003-z
[24] R{\`“u}schendorf, Ludger; Woerner, Jeannette H. C., Expansion of transition distributions of L\'”evy processes in small time, Bernoulli, 8, 1, 81-96 (2002) · Zbl 1007.60040
[25] Schilling, Ren{\'e} L.; Song, Renming; Vondra{\v{c}}ek, Zoran, Bernstein functions, de Gruyter Studies in Mathematics 37, xii+313 pp. (2010), Walter de Gruyter & Co., Berlin · Zbl 1197.33002
[26] Stone, Charles, Ratio limit theorems for random walks on groups, Trans. Amer. Math. Soc., 125, 86-100 (1966) · Zbl 0168.38501
[27] Stone, Charles, On local and ratio limit theorems. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Berkeley, Calif., 1965/66, 217-224 (1967), Univ. California Press, Berkeley, Calif. · Zbl 0236.60021
[28] Vladimirov, V. S., Methods of the theory of generalized functions, Analytical Methods and Special Functions 6, xiv+311 pp. (2002), Taylor & Francis, London · Zbl 1078.46029
[29] Vladimirov, V. S.; Drozzinov, Yu. N.; Zavialov, B. I., Tauberian theorems for generalized functions, Mathematics and its Applications (Soviet Series) 10, xvi+293 pp. (1988), Kluwer Academic Publishers Group, Dordrecht · Zbl 0636.40003 · doi:10.1007/978-94-009-2831-2
[30] Watanabe, Toshiro, The isoperimetric inequality for isotropic unimodal L\'evy processes, Z. Wahrsch. Verw. Gebiete, 63, 4, 487-499 (1983) · Zbl 0516.60079 · doi:10.1007/BF00533722
[31] Zhao, Minzhi; Ying, Jiangang, Ratio limit theorems for random walks and L\'evy processes, Potential Anal., 23, 4, 357-380 (2005) · Zbl 1065.60044 · doi:10.1007/s11118-005-2607-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.