×

On stability and error bounds of an explicit in time higher-order vector compact scheme for the multidimensional wave and acoustic wave equations. (English) Zbl 07763848

Summary: We study a three-level explicit in time higher-order vector compact scheme, with additional \(n\) sought functions approximating second order non-mixed spatial derivatives of the solution, for an initial-boundary value problem for the \(n\)-dimensional wave equation and acoustic wave equation, with the variable speed of sound, \(n \geqslant 1\). We also approximate the solution at the first time level in a similar two-level manner, without using derivatives of the initial data as usual. For the first time, under the CFL-type conditions, new stability bounds in the standard and stronger mesh energy norms and the discrete energy conservation laws are presented, and the corresponding error bounds of the orders 4 and 3.5 are rigorously proved. Generalizations to the cases of the nonuniform meshes in space and time are described. Results of various numerical experiments are also included.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Lxx Hyperbolic equations and hyperbolic systems
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] Anisimova, A. S.; Laevsky, Yu. M., On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes. Sib. Electron. Math. Rep., 759-767 (2018) · Zbl 1397.65128
[2] Baker, G. A.; Bramble, J. H., Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO. Anal. Numér., 75-1000 (1979) · Zbl 0405.65057
[3] Brekhovskikh, L. M.; Godin, O. A., Acoustics of Layered Media I. Plane and Quasi-Plane Waves (1990), Springer: Springer Berlin
[4] Britt, S.; Turkel, E.; Tsynkov, S., A high order compact time/space finite difference scheme for the wave equation with variable speed of sound. J. Sci. Comput., 2, 777-811 (2018) · Zbl 1397.65131
[5] Burman, E.; Duran, O.; Ern, A., Hybrid high-order methods for the acoustic wave equation in the time domain. Commun. Appl. Math. Comput., 2, 597-633 (2022) · Zbl 1499.65483
[6] Chabassier, J.; Diaz, J.; Imperiale, S., Construction and analysis of fourth order, energy consistent, family of explicit time discretizations for dissipative linear wave equations. ESAIM: Math. Model. Numer. Anal., 3, 845-878 (2020) · Zbl 1437.65091
[7] Ciment, M.; Leventhal, S. H., Higher order compact implicit schemes for wave equation. Math. Comput., 132, 985-994 (1975) · Zbl 0309.35043
[8] Cockburn, B.; Fu, Z.; Hungria, A.; Ji, L.; Sánchez, M. A.; Sayas, F.-J., Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput., 597-624 (2018) · Zbl 1398.65248
[9] Cohen, G. C., Higher-Order Numerical Methods for Transient Wave Equations (2002), Springer: Springer Berlin · Zbl 0985.65096
[10] Čiegis, R.; Suboč, O., High order compact finite difference schemes on nonuniform grids. Appl. Numer. Math., 205-218 (2018) · Zbl 1395.65015
[11] Deng, D.; Zhang, C., Application of a fourth-order compact ADI method to solve a two-dimensional linear hyperbolic equation. Int. J. Comput. Math., 2, 273-291 (2013) · Zbl 1278.65122
[12] Deng, D.; Zhang, C., Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables. Numer. Algorithms, 1-26 (2013) · Zbl 1269.65078
[13] Fedorchuk, V. I., On the invariant solutions of some five-dimensional d’Alembert equations. J. Math. Sci., 1, 27-37 (2017)
[14] Hou, B.; Liang, D.; Zhu, H., The conservative time high-order AVF compact finite difference schemes for two-dimensional variable coefficient acoustic wave equations. J. Sci. Comput., 1279-1309 (2019) · Zbl 1436.65102
[15] Jain, M. K.; Iyengar, S. R.K.; Subramanyam, G. S., Variable mesh methods for the numerical solution of two-point singular perturbation problems. Comput. Methods Appl. Mech. Eng., 273-286 (1984) · Zbl 0514.65065
[16] Jiang, Y.; Ge, Y., An explicit fourth-order compact difference scheme for solving the 2D wave equation. Adv. Differ. Equ., 1-14 (2020) · Zbl 1486.65108
[17] Jiang, Y.; Ge, Y., An explicit high-order compact difference scheme for the three-dimensional acoustic wave equation with variable speed of sound. Int. J. Comput. Math., 2, 321-341 (2023) · Zbl 1524.35345
[18] Karaa, S., Unconditionally stable ADI scheme of higher-order for linear hyperbolic equations. Int. J. Comput. Math., 13, 3030-3038 (2010) · Zbl 1210.65161
[19] Li, K.; Liao, W.; Lin, Y., A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient. J. Comput. Appl. Math., 1, 113-129 (2019) · Zbl 1422.65161
[20] Liao, H.-L.; Sun, Z.-Z., A two-level compact ADI method for solving second-order wave equations. Int. J. Comput. Math., 7, 1471-1488 (2013) · Zbl 1279.65099
[21] Liao, W., On the dispersion and accuracy of a compact higher-order difference scheme for 3D acoustic wave equation. J. Comput. Appl. Math., 571-583 (2014) · Zbl 1321.65134
[22] Liao, W.; Yong, P.; Dastour, H.; Huang, J., Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media. Appl. Math. Comput., 385-400 (2018) · Zbl 1426.76475
[23] Liu, J.; Tang, K., A new unconditionally stable ADI compact scheme for the two-space-dimensional linear hyperbolic equation. Int. J. Comput. Math., 10, 2259-2267 (2010) · Zbl 1202.65113
[24] Marchuk, G. I., Splitting and alternating direction methods, 203-462 · Zbl 0875.65049
[25] Matus, P. P.; Anh, H. T.K., Compact difference schemes for the multidimensional Klein-Gordon equation. Differ. Equ., 1, 120-138 (2022) · Zbl 07495305
[26] Mohanty, R. K.; Gopal, V., A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations. Appl. Math. Model., 5, 2802-2815 (2013) · Zbl 1352.65254
[27] Paasonen, V., Compact schemes for systems of second-order equations without mixed derivatives. Russ. J. Numer. Anal. Math. Model., 4, 335-344 (1998) · Zbl 0915.65099
[28] Radziunas, M.; Čiegis, R.; Mirinavičius, A., On compact high order finite difference schemes for linear Schrödinger problem on non-uniform meshes. Int. J. Numer. Anal. Model., 2, 303-314 (2014) · Zbl 1310.65094
[29] Samarskii, A. A., The Theory of Difference Schemes (2001), Marcel Dekker: Marcel Dekker New York-Basel · Zbl 0971.65076
[30] Schoeder, S.; Kormann, K.; Wall, W. A.; Kronbichler, M., Efficient explicit time stepping of high order discontinuous Galerkin schemes for waves. SIAM J. Sci. Comput., 6, C803-C826 (2018) · Zbl 1414.65021
[31] Smith, F.; Tsynkov, S.; Turkel, E., Compact high order accurate schemes for the three dimensional wave equation. J. Sci. Comput., 3, 1181-1209 (2019) · Zbl 1434.65135
[32] Yang, X.; Ge, Y.; Lan, B., A class of compact finite difference schemes for solving the 2D and 3D Burgers’ equations. Math. Comput. Simul., 510-534 (2021) · Zbl 1540.65343
[33] Zhang, W.; Tong, L.; Chung, E. T., A new high accuracy locally one-dimensional scheme for the wave equation. J. Comput. Appl. Math., 6, 1343-1353 (2011) · Zbl 1269.65081
[34] Zlotnik, A. A., Convergence rate estimates of finite-element methods for second order hyperbolic equations, 155-220 · Zbl 0851.65063
[35] Zlotnik, A., The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinet. Relat. Models, 3, 587-613 (2015) · Zbl 1327.65164
[36] Zlotnik, A., On properties of an explicit in time fourth-order vector compact scheme for the multidimensional wave equation (2021), pp. 1-15
[37] Zlotnik, A. A.; Chetverushkin, B. N., Stability of numerical methods for solving second-order hyperbolic equations with a small parameter. Dokl. Math., 1, 30-35 (2020) · Zbl 1528.65063
[38] Zlotnik, A.; Čiegis, R., A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes. Appl. Math. Lett. (2021) · Zbl 1466.65088
[39] Zlotnik, A.; Čiegis, R., On higher-order compact ADI schemes for the variable coefficient wave equation. Appl. Math. Comput. (2022) · Zbl 1510.65217
[40] Zlotnik, A.; Čiegis, R., On construction and properties of compact 4th order finite-difference schemes for the variable coefficient wave equation. J. Sci. Comput., 1 (2023) · Zbl 1518.65096
[41] Zlotnik, A.; Kireeva, O., On compact 4th order finite-difference schemes for the wave equation. Math. Model. Anal., 3, 479-502 (2021) · Zbl 1483.65145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.