×

On compact 4th order finite-difference schemes for the wave equation. (English) Zbl 1483.65145

Summary: We consider compact finite-difference schemes of the 4th approximation order for an initial-boundary value problem (IBVP) for the \(n\)-dimensional nonhomogeneous wave equation, \(n \geq 1\). Their construction is accomplished by both the classical Numerov approach and alternative technique based on averaging of the equation, together with further necessary improvements of the arising scheme for \(n \geq 2\). The alternative technique is applicable to other types of PDEs including parabolic and time-dependent Schrödinger ones. The schemes are implicit and three-point in each spatial direction and time and include a scheme with a splitting operator for \(n \geq 2\). For \(n = 1\) and the mesh on characteristics, the 4th order scheme becomes explicit and close to an exact four-point scheme. We present a conditional stability theorem covering the cases of stability in strong and weak energy norms with respect to both initial functions and free term in the equation. Its corollary ensures the 4th order error bound in the case of smooth solutions to the IBVP. The main schemes are generalized for non-uniform rectangular meshes. We also give results of numerical experiments showing the sensitive dependence of the error orders in three norms on the weak smoothness order of the initial functions and free term and essential advantages over the 2nd approximation order schemes in the non-smooth case as well.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

References:

[1] P. Brenner, V. Thomée and L.B. Wahlbin. Besov spaces and applications to difference methods for initial value problems. Springer, Berlin, 1975. https://doi.org/10.1007/BFb0068125. · Zbl 0294.35002 · doi:10.1007/BFb0068125
[2] S. Britt, E. Turkel and S. Tsynkov. A high order compact time/space finite difference scheme for the wave equation with variable speed of sound. J. Sci. Comput., 76(2):777-811, 2018. https://doi.org/10.1007/s10915-017-0639-9. · Zbl 1397.65131 · doi:10.1007/s10915-017-0639-9
[3] B. Ducomet, A. Zlotnik and A. Romanova. On a splitting higher-order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped. Appl. Math. Comput., 255:195-206, 2015. https://doi.org/10.1016/j.amc.2014.07.058. · Zbl 1339.65111 · doi:10.1016/j.amc.2014.07.058
[4] B. Hou, D. Liang and H. Zhu. The conservative time high-order AVF compact finite difference schemes for two-dimensional variable coef-ficient acoustic wave equations. J. Sci. Comput., 80:1279-1309, 2019. https://doi.org/10.1007/s10915-019-00983-6. · Zbl 1436.65102 · doi:10.1007/s10915-019-00983-6
[5] M.K. Jain, S.R.K. Iyengar and G.S. Subramanyam. Variable mesh methods for the numerical solution of two-point singular perturbation problems. Com-put. Meth. Appl. Mech. Engrg., 42:273-286, 1984. https://doi.org/10.1016/0045-7825(84)90009-4. · Zbl 0514.65065 · doi:10.1016/0045-7825(84)90009-4
[6] B. Jovanović. On the estimates of the convergence rate of the finite difference schemes for the approximation of solutions of hyperbolic problems, II part. Publ. Inst. Math., 88(89):149-155, 1994. · Zbl 0840.65096
[7] S. Lemeshevsky, P. Matus and D. Poliakov. Exact finite-difference schemes. Wal-ter de Gruyter, Berlin/Boston, 2016. https://doi.org/10.1515/9783110491326. · Zbl 1350.65001 · doi:10.1515/9783110491326
[8] K. Li, W. Liao and Y. Lin. A compact high order alternating di-rection implicit method for three-dimensional acoustic wave equation with variable coefficient. · Zbl 1422.65161
[9] J. Comput. Appl. Math., 361(1):113-129, 2019. https://doi.org/10.1016/j.cam.2019.04.013. · Zbl 1422.65161 · doi:10.1016/j.cam.2019.04.013
[10] S.M. Nikol’skii. Approximation of functions of several variables and imbedding theorem. Springer, Berlin-Heidelberg, 1975. https://doi.org/10.1007/978-3-642-65711-5. · Zbl 0307.46024 · doi:10.1007/978-3-642-65711-5
[11] M. Radziunas, R.Čiegis and A. Mirinavičius. On compact high order finite difference schemes for linear Schrödinger problem on non-uniform meshes. Int. J. Numer. Anal. Model., 11(2):303-314, 2014. · Zbl 1310.65094
[12] A.A. Samarskii. The theory of difference schemes. Marcel Dekker, New York-Basel, 2001. https://doi.org/10.1201/9780203908518. · Zbl 0971.65076 · doi:10.1201/9780203908518
[13] F. Smith, S. Tsynkov and E. Turkel. Compact high order accurate schemes for the three dimensional wave equation. J. Sci. Comput., 81(3):1181-1209, 2019. https://doi.org/10.1007/s10915-019-00970-x. · Zbl 1434.65135 · doi:10.1007/s10915-019-00970-x
[14] P. Trautmann, B. Vexler and A. Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1d wave equation with variable coefficients. Math. Control Relat. Fields, 8(2):411-449, 2018. https://doi.org/10.3934/mcrf.2018017. · Zbl 1407.65203 · doi:10.3934/mcrf.2018017
[15] R.Čiegis and O. Suboč. High order compact finite difference schemes on nonuniform grids. Appl. Numer. Math., 132:205-218, 2018. https://doi.org/10.1016/j.apnum.2018.06.003. · Zbl 1395.65015 · doi:10.1016/j.apnum.2018.06.003
[16] A. Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kin. Relat. Model., 8(3):587-613, 2015. https://doi.org/10.3934/krm.2015.8.587. · Zbl 1327.65164 · doi:10.3934/krm.2015.8.587
[17] A. Zlotnik and O. Kireeva. Practical error analysis for the bilinear FEM and finite-difference scheme for the 1d wave equation with non-smooth data. Math. Model. Anal., 23(3):359-378, 2018. https://doi.org/10.3846/mma.2018.022. · Zbl 1488.65494 · doi:10.3846/mma.2018.022
[18] A. Zlotnik and R.Čiegis. A “converse” stability condition is necessary for a compact higher order scheme on non-uniform meshes for the time-dependent Schrödinger equation. · Zbl 1393.65019
[19] Appl. Math. Letters, 80:35-40, 2018. https://doi.org/10.1016/j.aml.2018.01.005. · Zbl 1393.65019 · doi:10.1016/j.aml.2018.01.005
[20] A. Zlotnik and R.Čiegis. A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes. Appl. Math. Letters, 115:106949, 2021. https://doi.org/10.1016/j.aml.2020.106949. · Zbl 1466.65088 · doi:10.1016/j.aml.2020.106949
[21] A.A. Zlotnik. Convergence rate estimates of finite-element methods for second order hyperbolic equations. In G.I. Marchuk(Ed.), Numerical methods and ap-plications, pp. 155-220. CRC Press, Boca Raton, 1994. · Zbl 0851.65063
[22] A.A. Zlotnik and B.N. Chetverushkin. Stability of numerical methods for solv-ing second-order hyperbolic equations with a small parameter. Doklady Math., 101(1):30-35, 2020. https://doi.org/10.1134/S1064562420010226. · Zbl 1528.65063 · doi:10.1134/S1064562420010226
[23] A.A. Zlotnik and I.A. Zlotnik. Fast Fourier solvers for the tensor product high-order FEM for a Poisson type equation. Comput. Math. Math. Phys., 60(2):240-257, 2020. https://doi.org/10.1134/S096554252002013X. · Zbl 1452.65366 · doi:10.1134/S096554252002013X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.