×

Construction and analysis of fourth order, energy consistent, family of explicit time discretizations for dissipative linear wave equations. (English) Zbl 1437.65091

Summary: This paper deals with the construction of a family of fourth order, energy consistent, explicit time discretizations for dissipative linear wave equations. The schemes are obtained by replacing the inversion of a matrix, that comes naturally after using the technique of the Modified Equation on the second order Leap Frog scheme applied to dissipative linear wave equations, by explicit approximations of its inverse. The stability of the schemes are studied using an energy analysis and a convergence analysis is carried out. Numerical results in 1D illustrate the space/time convergence properties of the schemes and their efficiency is compared to more classical time discretizations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
33C55 Spherical harmonics

References:

[1] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. 3rd ed. Springer, New York (2008). · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[2] M. Cassier, P. Joly and M. Kachanovska, Mathematical models for dispersive electromagnetic waves: an overview. Comput. Math. Appl. 74 (2017) 2792-2830. · Zbl 1397.78004
[3] J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. Wave Motion 50 (2012) 456-480. · Zbl 1454.74103
[4] J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations. J. Comput. Appl. Math. 245 (2013) 194-212. · Zbl 1262.65119
[5] J. Chabassier and S. Imperiale, Space/time convergence analysis of a class of conservative schemes for linear wave equations. C.R. Math. 355 (2017) 282-289. · Zbl 1360.65227 · doi:10.1016/j.crma.2016.12.009
[6] G. Cohen, High-order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001).
[7] G. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Element Anal. Des. 16 (1994) 329-336. · Zbl 0865.65072 · doi:10.1016/0168-874X(94)90075-2
[8] G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047-2078. · Zbl 1019.65077
[9] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, In: Vols 5 and 6 of Evolution Problems I and II. Springer-Verlag, Berlin (2000). · Zbl 0956.35003
[10] S.S. Dragomir, Some Gronwall type inequalities and applications. Nova Science Pub Incorporated (2003). · Zbl 1094.34001
[11] S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503-542. · Zbl 1433.65157 · doi:10.1093/imanum/drv026
[12] K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math. 4 (1986) 279-289. · Zbl 0596.65090
[13] P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping. J. Differ. Equ. 132 (1996) 338-352. · Zbl 0878.35067
[14] P. Freitas, M. Grinfeld and P.A. Knight, Stability of finite-dimensional systems with indefinite damping. Adv. Math. Sci. App. 17 (1997) 435-446. · Zbl 0949.34041
[15] J.C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Partial Differ. Equ. 16 (2008) 67-93. · Zbl 1149.65070
[16] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). · Zbl 0695.35060
[17] M.J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped wave equations. J. Comput. Appl. Math. 239 (2013) 270-289. · Zbl 1255.65174
[18] M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. · Zbl 1129.65065
[19] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics (2006). · Zbl 1094.65125
[20] P. Joly, Topics in computational wave propagation. “Variational methods for time-dependent wave propagation problems”. In: Vol. 31 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003) 201-264. · Zbl 1049.78028 · doi:10.1007/978-3-642-55483-4_6
[21] P. Joly, The mathematical model for elastic wave propagation. Effective computational methods for wave propagation. Numer. Insights Chapman Hall/CRC 5 (2008) 247-266. · Zbl 1162.74021 · doi:10.1201/9781420010879.ch9
[22] T. Kato, Perturbation theory for linear operators. In: Vol. 132 of Classics in Mathematics. Springer-Verlag, Berlin Heidelberg (1995). · Zbl 0836.47009 · doi:10.1007/978-3-642-66282-9
[23] G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation. Soc. Ind. Appl. Math. J. Sci. Stat. Comput. 8 (1987) 135-151. · Zbl 0611.76091 · doi:10.1137/0908026
[24] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146 (1990) 319-323.
[25] J.G. Verwer, Runge-Kutta methods and viscous wave equations. Numer. Math. 112 (2009) 485-507. · Zbl 1167.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.