×

A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains. (English) Zbl 07640577

Summary: The Navier-Stokes-Korteweg (NSK) system is a classical diffuse interface model which is based on van der Waals’ theory of capillarity. Diffuse interface methods have gained much interest to model two-phase flow in porous media. However, for the numerical solution of the NSK equations two major challenges have to be faced. First, an extended numerical stencil is required due to a third-order term in the linear momentum and the total energy equations. In addition, the dispersive contribution in the linear momentum equations prevents the straightforward use of contact angle boundary conditions. Secondly, any real gas equation of state is based on a non-convex Helmholtz free energy potential which may cause the eigenvalues of the Jacobian of the first-order fluxes to become imaginary numbers inside the spinodal region.
In this work, a thermodynamically consistent relaxation model is presented which is used to approximate the NSK equations. The model is complimented by thermodynamically consistent non-equilibrium boundary conditions which take contact angle effects into account. Due to the relaxation approach, the contribution of the Korteweg tensor in the linear momentum and total energy equations can be reduced to first-order terms which enables a straightforward implementation of contact angle boundary conditions in a numerical scheme. Moreover, the definition of a modified pressure function enables to formulate first-order fluxes which remain strictly hyperbolic in the entire spinodal region. The present work is a generalization of a previously presented parabolic relaxation model for the isothermal NSK equations.
A high-order discontinuous Galerkin spectral element method which supports curved elements and hanging nodes is employed to discretize the system. The relaxation model and its corresponding boundary conditions are validated using solutions of the original NSK model and analytical results for one-, two- and three-dimensional test cases. The simulation of a spinodal decomposition in a three-dimensional porous structure underlines the capability of the presented approach.

MSC:

76Mxx Basic methods in fluid mechanics
35Qxx Partial differential equations of mathematical physics and other areas of application
76Nxx Compressible fluids and gas dynamics

Software:

FLEXI; parDG

References:

[1] Guo, Z.; Liu, W., Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure, Plant Sci., 172, 1103-1112 (2007)
[2] Class, H.; Ebigbo, A.; Helmig, R.; Dahle, H. K.; Nordbotten, J. M.; Celia, M. A.; Audigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; Flemisch, B.; Gasda, S. E.; Jin, M.; Krug, S.; Labregere, D.; Naderi Beni, A.; Pawar, R. J.; Sbai, A.; Thomas, S. G.; Trenty, L.; Wei, L., A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13, 409-434 (2009) · Zbl 1190.86011
[3] Weinstein, S. J.; Ruschak, K. J., Coating flows, Annu. Rev. Fluid Mech., 36, 29-53 (2004) · Zbl 1081.76009
[4] de Gans, B.-J.; Duineveld, P. C.; Schubert, U. S., Inkjet printing of polymers: state of the art and future developments, Adv. Mater., 16, 203-213 (2004)
[5] Blunt, M. J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C., Pore-scale imaging and modelling, Adv. Water Resour., 51, 197-216 (2013)
[6] Ishii, M.; Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow (2011), Springer New York: Springer New York New York, NY · Zbl 1209.76001
[7] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[8] Hitz, T.; Jöns, S.; Heinen, M.; Vrabec, J.; Munz, C.-D., Comparison of macro- and microscopic solutions of the Riemann problem II. Two-phase shock tube, J. Comput. Phys., 429, Article 110027 pp. (2021) · Zbl 07500759
[9] Jöns, S.; Munz, C.-D., Riemann solvers for phase transition in a compressible sharp-interface method, Appl. Math. Comput., 440, Article 127624 pp. (2023) · Zbl 1510.76181
[10] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[11] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[12] Cueto-Felgueroso, L.; Fu, X.; Juanes, R., Pore-scale modeling of phase change in porous media, Phys. Rev. Fluids, 3, Article 084302 pp. (2018)
[13] Van der Waals, J., Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Z. Phys. Chem., 13, 657-725 (1894)
[14] Korteweg, D. J., Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Arch. Néerland. Sci. Exact. Natur., 6, 1-24 (1901) · JFM 32.0756.02
[15] Dunn, J. E.; Serrin, J., On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 95-133 (1985) · Zbl 0582.73004
[16] Souček, O.; Heida, M.; Málek, J., On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids, Int. J. Eng. Sci., 154, Article 103316 pp. (2020) · Zbl 07228661
[17] Rohde, C., Fully resolved compressible two-phase flow: modelling, analytical and numerical issues, (Bulicek, M.; Feireisl, E.; Pokorny, M., New Trends and Results in Mathematical Description of Fluid Flows (2018), Springer International Publishing: Springer International Publishing Cham), 115-181 · Zbl 1418.35313
[18] Hattori, H.; Li, D., Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25, 85-98 (1994) · Zbl 0817.35076
[19] Bresch, D.; Desjardins, B.; Lin, C.-K., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., 28, 843-868 (2003) · Zbl 1106.76436
[20] Rohde, C., On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions, ZAMM J. Appl. Math. Mech., 85, 839-857 (2005) · Zbl 1099.76072
[21] Kotschote, M., Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, 25, 679-696 (2008) · Zbl 1141.76053
[22] Jamet, D.; Lebaigue, O.; Coutris, N.; Delhaye, J. M., The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys., 169, 624-651 (2001) · Zbl 1047.76098
[23] Coquel, F.; Diehl, D.; Merkle, C.; Rohde, C., Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, (Numerical Methods for Hyperbolic and Kinetic Problems, vol. 7 (2005)), 239-270 · Zbl 1210.80016
[24] Diehl, D., Higher Order Schemes for Simulation of Compressible Liquid-Vapour Flows with Phase Change (2007), Albert-Ludwigs-Universität: Albert-Ludwigs-Universität Freiburg, PhD thesis · Zbl 1161.76002
[25] Haink, J.; Rohde, C., Local discontinuous-Galerkin schemes for model problems in phase transition theory, Commun. Comput. Phys., 4, 860-893 (2008) · Zbl 1364.76087
[26] Gomez, H.; Hughes, T. J.R.; Nogueira, X.; Calo, V. M., Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Comput. Methods Appl. Mech. Eng., 199, 1828-1840 (2010) · Zbl 1231.76191
[27] Braack, M.; Prohl, A., Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension, ESAIM Math. Model. Numer. Anal., 47, 401-420 (2013) · Zbl 1267.76019
[28] Giesselmann, J.; Pryer, T., Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model, ESAIM Math. Model. Numer. Anal., 49, 275-301 (2015) · Zbl 1310.76092
[29] Tian, L.; Xu, Y.; Kuerten, J. G.M.; v. d. Vegt, J. J.W., A local discontinuous Galerkin method for the (non)-isothermal Navier-Stokes-Korteweg equations, J. Comput. Phys., 295, 685-714 (2015) · Zbl 1349.76275
[30] Diehl, D.; Kremser, J.; Kröner, D.; Rohde, C., Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions, Appl. Math. Comput., 272, 309-335 (2016) · Zbl 1410.76166
[31] Gelissen, E. J.; v. d. Geld, C. W.M.; Kuipers, J. A.M.; Kuerten, J. G.M., Simulations of droplet collisions with a diffuse interface model near the critical point, Int. J. Multiph. Flow, 107, 208-220 (2018)
[32] Martínez, A.; Ramírez, L.; Nogueira, X.; Khelladi, S.; Navarrina, F., A high-order finite volume method with improved isotherms reconstruction for the computation of multiphase flows using the Navier-Stokes-Korteweg equations, Comput. Math. Appl. (2019)
[33] Gelissen, E.; van der Geld, C.; Baltussen, M.; Kuerten, J., Modeling of droplet impact on a heated solid surface with a diffuse interface model, Int. J. Multiph. Flow, 123, Article 103173 pp. (2020)
[34] Rohde, C.; von Wolff, L., Homogenization of nonlocal Navier-Stokes-Korteweg equations for compressible liquid-vapor flow in porous media, SIAM J. Math. Anal., 52, 6155-6179 (2020) · Zbl 1454.76098
[35] Rohde, C., A local and low-order Navier-Stokes-Korteweg system, (Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, vol. 526 (2010), American Mathematical Society: American Mathematical Society Providence, RI), 315-337 · Zbl 1453.35139
[36] Neusser, J.; Rohde, C.; Schleper, V., Relaxation of the Navier-Stokes-Korteweg equations for compressible two-phase flow with phase transition, Int. J. Numer. Methods Fluids, 79, 615-639 (2015) · Zbl 1455.65176
[37] Chertock, A.; Degond, P.; Neusser, J., An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations, J. Comput. Phys., 335, 387-403 (2017) · Zbl 1375.76121
[38] Corli, A.; Rohde, C.; Schleper, V., Parabolic approximations of diffusive-dispersive equations, J. Math. Anal. Appl., 414, 773-798 (2014) · Zbl 1311.35153
[39] Hitz, T.; Keim, J.; Munz, C.-D.; Rohde, C., A parabolic relaxation model for the Navier-Stokes-Korteweg equations, J. Comput. Phys., 421, Article 109714 pp. (2020) · Zbl 1537.76141
[40] Desmarais, J., Towards numerical simulation of phase-transitional flows (2016), Ph.D. thesis, Mechanical Engineering, Proefschrift
[41] Jacqmin, D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57-88 (2000) · Zbl 0984.76084
[42] Sibley, D. N.; Nold, A.; Savva, N.; Kalliadasis, S., On the moving contact line singularity: asymptotics of a diffuse-interface model, Eur. Phys. J. E, 36, 26 (2013)
[43] Sibley, D. N.; Nold, A.; Savva, N.; Kalliadasis, S., The contact line behaviour of solid-liquid-gas diffuse-interface models, Phys. Fluids, 25, Article 092111 pp. (2013)
[44] Heida, M., On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system, Int. J. Eng. Sci., 62, 126-156 (2013) · Zbl 1423.76094
[45] Dhaouadi, F.; Favrie, N.; Gavrilyuk, S., Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math., 142, 336-358 (2019) · Zbl 1418.35335
[46] Rajagopal, K. R.; Srinivasa, A. R., On thermomechanical restrictions of continua, Proc. R. Soc. London, Ser. A, Math. Phys. Eng. Sci., 460, 631-651 (2004) · Zbl 1041.74002
[47] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., 63, 145-169 (2012) · Zbl 1295.76002
[48] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework, Z. Angew. Math. Phys., 63, 759-776 (2012) · Zbl 1295.35360
[49] Carr, J.; Gurtin, M. E.; Slemrod, M., Structured phase transitions on a finite interval, Arch. Ration. Mech. Anal., 86, 317-351 (1984) · Zbl 0564.76075
[50] Heinen, M.; Hoffmann, M.; Diewald, F.; Seckler, S.; Langenbach, K.; Vrabec, J., Droplet coalescence by molecular dynamics and phase-field modeling, Phys. Fluids, 34, Article 042006 pp. (2022)
[51] Jou, D.; Casas-Vazquez, J.; Lebon, G., Extended Irreversible Thermodynamics (2010), Springer · Zbl 1185.74002
[52] Truesdell, C., Rational Thermodynamics (1985), Springer · Zbl 0598.73002
[53] Dunn, J. E., Interstitial working and a nonclassical continuum thermodynamics, (Serrin, J., New Perspectives in Thermodynamics (1986), Springer Berlin Heidelberg), 187-222 · Zbl 0605.73007
[54] Cimmelli, V. A.; Sellitto, A.; Triani, V., A new perspective on the form of the first and second laws in rational thermodynamics: Korteweg fluids as an example, J. Non-Equilib. Thermodyn., 35, 251-265 (2010) · Zbl 1213.80008
[55] Heida, M.; Málek, J., On compressible Korteweg fluid-like materials, Int. J. Eng. Sci., 48, 1313-1324 (2010) · Zbl 1231.76248
[56] Freistühler, H.; Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Ration. Mech. Anal., 224, 1-20 (2017) · Zbl 1366.35130
[57] Giovangigli, V., Kinetic derivation of diffuse-interface fluid models, Phys. Rev. E, 102, Article 012110 pp. (2020)
[58] Gavrilyuk, S.; Gouin, H., Symmetric form of governing equations for capillary fluid, (Trends in Applications of Mathematics to Mechanics. Trends in Applications of Mathematics to Mechanics, Monogr. Surv. Pure Appl. Math., vol. 106 (1996), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL), 306-311 · Zbl 0973.35152
[59] Dreyer, W.; Giesselmann, J.; Kraus, C.; Rohde, C., Asymptotic analysis for Korteweg models, Interfaces Free Bound., 14, 105-143 (2012) · Zbl 1241.76375
[60] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 1227.76006
[61] Thorade, M.; Saadat, A., Partial derivatives of thermodynamic state properties for dynamic simulation, Environ. Earth Sci., 70, 3497-3503 (2013)
[62] Desmarais, J.; Kuerten, J., Open boundary conditions for the diffuse interface model in 1-D, J. Comput. Phys., 263, 393-418 (2014) · Zbl 1349.76451
[63] Noether, E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 235-257 (1918) · JFM 46.0770.01
[64] Slattery, J. C., Interfacial transport phenomena, Chem. Eng. Commun., 4, 149-166 (1980)
[65] Rowlinson, J. S.; Widom, B., Molecular Theory of Capillarity (1984), Dover Publications: Dover Publications New York
[66] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[67] Pismen, L. M.; Pomeau, Y., Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics, Phys. Rev. E, 62, 2480-2492 (2000)
[68] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[69] Krais, N.; Beck, A.; Bolemann, T.; Frank, H.; Flad, D.; Gassner, G.; Hindenlang, F.; Hoffmann, M.; Kuhn, T.; Sonntag, M.; Munz, C.-D., FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws, Comput. Math. Appl., 81, 186-219 (2021) · Zbl 1461.76347
[70] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[71] Kennedy, C. A.; Carpenter, M. H.; Lewis, R., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, 177-219 (2000) · Zbl 0986.76060
[72] Föll, F.; Hitz, T.; Müller, C.; Munz, C.-D.; Dumbser, M., On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit, Shock Waves, 29, 769-793 (2019)
[73] Rajkotwala, A.; Gelissen, E.; Peters, E.; Baltussen, M.; van der Geld, C.; Kuerten, J.; Kuipers, J., Comparison of the local front reconstruction method with a diffuse interface model for the modeling of droplet collisions, Chem. Eng. Sci. X, 7, Article 100066 pp. (2020)
[74] Dörmann, M.; Schmid, H.-J., Simulation of capillary bridges between particles, Proc. Eng., 102, 14-23 (2015)
[75] Mastrangeli, M., The fluid joint: the soft spot of micro- and nanosystems, Adv. Mater., 27, 4254-4272 (2015)
[76] Kuhn, T.; Dürrwächter, J.; Meyer, F.; Beck, A.; Rohde, C.; Munz, C.-D., Uncertainty quantification for direct aeroacoustic simulations of cavity flows, J. Theor. Comput. Acoust., 27, Article 1850044 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.