×

Relaxation of the Navier-Stokes-Korteweg equations for compressible two-phase flow with phase transition. (English) Zbl 1455.65176

Summary: The Navier-Stokes-Korteweg (NSK) system is a classical diffuse-interface model for compressible two-phase flow. However, the direct numerical simulation based on the NSK system is quite expensive and in some cases even not possible. We propose a lower-order relaxation of the NSK system with hyperbolic first-order part. This allows applying numerical methods for hyperbolic conservation laws and removing some of the difficulties of the original NSK system. To illustrate the new ansatz, we first present a local discontinuous Galerkin method in one and two spatial dimensions. It is shown that we can compute initial boundary value problems with realistic density ratios and perform stable computations for small interfacial widths. Second, we show that it is possible to construct a semi-discrete finite-volume scheme that satisfies a discrete entropy inequality.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] KortewegDJ. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densitè considérables mais continues et sur la thèorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises de Sciences Exactes et Naturelles1901; 2(6):1-24. · JFM 32.0756.02
[2] DunnJE, SerrinJ. On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis1985; 88(2):95-133. · Zbl 0582.73004
[3] AndersonDM, McFaddenGB, WheelerAA. Diffuse‐interface methods in fluid mechanics. Annual Review of Fluid Mechanics1998; 30(1):139-165. · Zbl 1398.76051
[4] Benzoni‐GavageS. Nonuniqueness of phase transitions near the Maxwell line. Proceedings of the American Mathematical Society1999; 127(4):1183-1190. · Zbl 0915.76095
[5] BreschD, DesjardinsB, LinCK. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Communications in Partial Differential Equations2003; 28(3‐4):843-868. · Zbl 1106.76436
[6] HattoriH, LiD. Solutions for two‐dimensional system for materials of Korteweg type. SIAM Journal of Mathematical Analysis1994; 25(1):85-98. · Zbl 0817.35076
[7] KotschoteM. Strong solutions for a compressible fluid model of Korteweg type. Annales de l’Institut Henri Poincare (C) Non Linear Analysis2008; 25(4):679-696. · Zbl 1141.76053
[8] RohdeC. On local and non‐local Navier‐Stokes‐Korteweg systems for liquid‐vapour phase transitions. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik2005; 85(12):839-857. · Zbl 1099.76072
[9] BraackM, ProhlA. Stable discretization of a diffuse interface model for liquid‐vapor flows with surface tension. ESAIM Mathematical Modelling and Numerical Analysis2013; 47(2):401-420. · Zbl 1267.76019
[10] CoquelF, DiehlD, MerkleC, RohdeC. Sharp and diffuse interface methods for phase transition problems in liquid‐vapour flows. In Numerical Methods for Hyperbolic and Kinetic Problems, Vol. 7. European Mathematical Society: Zürich, 2005; 239-270. · Zbl 1210.80016
[11] DiehlD. Higher order schemes for simulation of compressible liquid‐vapor flows with phase change. Ph.D. Thesis, Albert‐Ludwigs‐Universität Freiburg, 2007. · Zbl 1161.76002
[12] GiesselmannJ, MakridakisC, PryerT. Energy consistent DG methods for the Navier‐Stokes‐Korteweg system. Mathematics of Computation2014; 83:2071-2099. · Zbl 1391.76331
[13] HainkJ, RohdeC. Local discontinuous‐Galerkin schemes for model problems in phase transition theory. Communications in Computational Physics2008; 4(4):860-893. · Zbl 1364.76087
[14] JametD, LebaigueO, CoutrisN, DelhayeJM. The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. Journal of Computational Physics2001; 169(2):624-651. · Zbl 1047.76098
[15] TianL, XuY, KuertenJGM, Van der VegtJJW. A local discontinuous Galerkin method for the propagation of phase transition in solids and fluids. Journal of Scientific Computing2014; 59(3):688-720. · Zbl 1297.76106
[16] DreyerW, GiesselmannJ, KrausC, RohdeC. Asymptotic analysis for Korteweg models. Interfaces and Free Boundaries2012; 14(1):105-143. · Zbl 1241.76375
[17] HermsdörferK, KrausC, KrönerD. Interface conditions for limits of the Navier‐Stokes‐Korteweg model. Interfaces and Free Boundaries2011; 13(2):239-254. · Zbl 1219.35191
[18] BlesgenT. A generalization of the Navier‐Stokes equations to two‐phase flows. Journal of Physics D: Applied Physics1999; 32:1119-1123.
[19] AkiGL, DreyerW, GiesselmannJ, KrausC. A quasi‐incompressible diffuse interface model with phase transition. Mathematical Models and Methods in Applied Sciences2014; 24(5):827-861. · Zbl 1293.35077
[20] WittersteinG. Phase change flows with mass exchange. Advances in Mathematical Sciences and Applications2011; 21(2):559-611. · Zbl 1256.35069
[21] RohdeC. A local and low‐order Navier‐Stokes‐Korteweg system. In Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Vol. 526. American Mathematical Society: Providence, RI, 2010; 315-337. · Zbl 1453.35139
[22] BassiF, RebayS. A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier‐Stokes equations. Journal of Computational Physics1997; 131(2):267-279. · Zbl 0871.76040
[23] CockburnB, ShuCW. TVB Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation1989; 52(186):411-435. · Zbl 0662.65083
[24] CockburnB, LinSY, ShuCW. TVB Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One‐dimensional systems. Journal of Computational Physics1989; 84(1):90-113. · Zbl 0677.65093
[25] CockburnB, HouS, ShuCW. The Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Mathematics of Computation1990; 54(190):545-581. · Zbl 0695.65066
[26] RivièreBDiscontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics: Philadelphia, PA, 2008. · Zbl 1153.65112
[27] TadmorE. Numerical viscosity and the entropy condition for conservative difference schemes. Mathematics of Computation1984; 43(168):369-381. · Zbl 0587.65058
[28] TadmorE. Entropy stability theory for difference approximations of nonlinear conservation laws and related time‐dependent problems. Acta Numerica2003; 12:451-512. · Zbl 1046.65078
[29] SolciM. A variational model for phase separation, Scuola Normale Superiore Pisa, Ph.D. Thesis, 2002.
[30] CharveFConvergence of a low order non‐local Navier‐Stokes‐Korteweg system: the order‐parameter model. February 11, 2013. (Available from: http://arxiv.org/abs/1302.2617).
[31] CharveF. Local in time results for local and non‐local capillary Navier-Stokes systems with large data. Journal of Differential Equations2014; 256(7):2152-2193. · Zbl 1285.35078
[32] CorliA, RohdeC. Singular limits for a parabolic‐elliptic regularization of scalar conservation laws. Journal of Differential Equations2012; 253(5):1399-1421. · Zbl 1259.35138
[33] EngelP, ViorelA, RohdeC. A low‐order approximation for viscous‐capillary phase transition dynamics. Portugaliae Mathematica2014; 70(4):319-344. · Zbl 1302.35249
[34] GiesselmannJ. A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity. SIAM Journal on Mathematical Analysis2014; 46(5):3518-3539. · Zbl 1311.35172
[35] GiesselmannJ, LattanzioC, TzavarasARelative entropy for Hamiltonian flows. In preparation.
[36] KrönerDNumerical Schemes for Conservation Laws, Wiley‐Teubner Series Advances in Numerical Mathematics. John Wiley & Sons Ltd.: Chichester, 1997. · Zbl 0872.76001
[37] ShuCW, OsherS. Efficient implementation of essentially nonoscillatory shock‐capturing schemes. Journal of Computational Physics1988; 77(2):439-471. · Zbl 0653.65072
[38] RoePL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics1981; 43(2):357-372. · Zbl 0474.65066
[39] GlaisterP. An approximate linearised Riemann solver for the Euler equations for real gases. Journal of Computational Physics1988; 74(2):382-408. · Zbl 0632.76079
[40] Dal MasoG, LeflochPG, MuratF. Journal de Mathématiques Pures et Appliquées1995; 74(6):483-548. · Zbl 0853.35068
[41] TadmorE. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Mathematics of Computational1987; 49(179):91-103. · Zbl 0641.65068
[42] FjordholmUS, MishraS, TadmorE. Energy preserving and energy stable schemes for the shallow water equations. Foundations of Computational Mathematics2009; 363:93-139. · Zbl 1381.76236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.