×

The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations. (English) Zbl 07533815

Summary: This paper is concerned with a highly accurate numerical scheme for a class of one- and two-dimensional time-fractional advection-reaction-subdiffusion equations of variable-order \(\alpha(\mathbf{x}, t) \in(0, 1)\). For the spatial and temporal discretization of the equation, a fourth-order compact finite difference operator and a third-order weighted-shifted Grünwald formula are applied, respectively. The stability and convergence of the present scheme are addressed. Some extensive numerical experiments are performed to confirm the theoretical analysis and high-accuracy of this novel scheme. Comparisons are also made with the available schemes in the literature.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Rxx Miscellaneous topics in partial differential equations
35Kxx Parabolic equations and parabolic systems
Full Text: DOI

References:

[1] Ahmadinia, M.; Safari, Z.; Abbasi, M., Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion, Appl. Numer. Math., 157, 602-618 (2020) · Zbl 1446.65105
[2] Baleanu, Dumitru; Machado, José António Tenreiro; Luo, Albert C. J., Fractional Dynamics and Control (2011), Springer Science & Business Media · Zbl 1228.37001
[3] Baleanu, Dumitru; Diethelm, Kai; Scalas, Enrico; Trujillo, Juan J., Fractional Calculus: Models and Numerical Methods, vol. 3 (2012), World Scientific · Zbl 1248.26011
[4] Burrage, Kevin; Cardone, Angelamaria; D’Ambrosio, Raffaele; Paternoster, Beatrice, Numerical solution of time fractional diffusion systems, Appl. Numer. Math., 116, 82-94 (2017) · Zbl 1372.65228
[5] Cao, Jianxiong; Qiu, Yanan; Song, Guojie, A compact finite difference scheme for variable order subdiffusion equation, Commun. Nonlinear Sci. Numer. Simul., 48, 140-149 (2017) · Zbl 1524.65323
[6] Chen, Chang-Ming; Liu, Fawang; Anh, Vo; Turner, Ian, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32, 4, 1740-1760 (2010) · Zbl 1217.26011
[7] Chen, Chang-Ming; Liu, Fawang; Anh, Vo; Turner, Ian, Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217, 12, 5729-5742 (2011) · Zbl 1227.65072
[8] Chen, Chang-Ming; Liu, Fawang; Turner, Ian; Anh, Vo; Chen, Y., Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation, Numer. Algorithms, 63, 2, 265-290 (2013) · Zbl 1278.65121
[9] Coimbra, Carlos F. M., Mechanics with variable-order differential operators, Ann. Phys., 12, 11-12, 692-703 (2003) · Zbl 1103.26301
[10] Cui, Mingrong, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228, 20, 7792-7804 (2009) · Zbl 1179.65107
[11] Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen, A novel direct method based on the Lucas multiwavelet functions for variable-order fractional reaction-diffusion and subdiffusion equations, Numer. Linear Algebra Appl., 28, 2, Article e2346 pp. (2021) · Zbl 07332759
[12] Derakhshan, M. H., Existence, uniqueness, Ulam-Hyers stability and numerical simulation of solutions for variable order fractional differential equations in fluid mechanics, J. Appl. Math. Comput., 1-27 (2021)
[13] Du, Ruilian; Alikhanov, Anatoly A.; Sun, Zhi-Zhong, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79, 10, 2952-2972 (2020) · Zbl 1447.65020
[14] Evans, Kristian P.; Jacob, Niels, Feller semigroups obtained by variable order subordination (2006), arXiv preprint · Zbl 1153.47033
[15] Fang, Zhi-Wei; Sun, Hai-Wei; Wang, Hong, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations, Comput. Math. Appl., 80, 5, 1443-1458 (2020) · Zbl 1447.65022
[16] Gao, Guang-hua; Sun, Zhi-zhong, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230, 3, 586-595 (2011) · Zbl 1211.65112
[17] Golub, Gene H.; Van Loan, Charles F., Matrix Computations (2013), Johns Hopkins University Press · Zbl 1268.65037
[18] Graham, Alexander, Kronecker Products and Matrix Calculus with Applications (2018), Courier Dover Publications · Zbl 1418.26002
[19] Hafez, R. M.; Youssri, Y. H., Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation, Comput. Appl. Math., 37, 4, 5315-5333 (2018) · Zbl 1404.65195
[20] Hajipour, Mojtaba; Jajarmi, Amin; Baleanu, Dumitru; Sun, HongGuang, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69, 119-133 (2019) · Zbl 1509.65071
[21] Hong, Du; Chen, Zhong; Yang, Tiejun, A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain, Appl. Math. Lett., 116, Article 107014 pp. (2021) · Zbl 1468.65172
[22] Jacob, Niels; Leopold, Hans-Gerd, Pseudo differential operators with variable order of differentiation generating Feller semigroups, Integral Equ. Oper. Theory, 17, 4, 544-553 (1993) · Zbl 0793.35139
[23] Kikuchi, Koji; Negoro, Akira, On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math., 34, 2, 319-335 (1997) · Zbl 0913.60062
[24] Kosztołowicz, Tadeusz, Subdiffusion in a system with a thick membrane, J. Membr. Sci., 320, 1-2, 492-499 (2008)
[25] Leopold, Hans-Gerd, Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration, Czechoslov. Math. J., 49, 3, 633-644 (1999) · Zbl 1008.46015
[26] Li, Changpin; Zeng, Fanhai, Numerical Methods for Fractional Calculus, vol. 24 (2015), Chapman and Hal1/CRC Press · Zbl 1326.65033
[27] Lin, Ran; Liu, Fawang; Anh, Vo; Turner, Ian, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212, 2, 435-445 (2009) · Zbl 1171.65101
[28] Liu, Jianming; Li, Xinkai; Hu, Xiuling, A rbf-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 384, 222-238 (2019) · Zbl 1451.65131
[29] Lorenzo, Carl F.; Hartley, Tom T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 1, 57-98 (2002) · Zbl 1018.93007
[30] Magin, Richard L.; Abdullah, Osama; Baleanu, Dumitru; Zhou, Xiaohong Joe, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Res., 190, 2, 255-270 (2008)
[31] Sabatier, J. A.T. M.J.; Agrawal, Ohm Parkash; Machado, J. A. Tenreiro, Advances in Fractional Calculus, vol. 4 (2007), Springer · Zbl 1116.00014
[32] Samko, Stefan G.; Ross, Bertram, Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1, 4, 277-300 (1993) · Zbl 0820.26003
[33] Shen, Shujun; Liu, Fawang; Chen, Jing; Turner, Ian; Anh, Vo, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 22, 10861-10870 (2012) · Zbl 1280.65089
[34] Shyu, Jong-Jy; Pei, Soo-Chang; Chan, Cheng-Han, An iterative method for the design of variable fractional-order fir differintegrators, Signal Process., 89, 3, 320-327 (2009) · Zbl 1151.94410
[35] Smith, Gordon D.; Smith, Gordon D.; Smith, Gordon Dennis Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (1985), Oxford University Press · Zbl 0576.65089
[36] Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193, 1, 185-192 (2011)
[37] Sun, HongGuang; Zhang, Yong; Chen, Wen; Reeves, Donald M., Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157, 47-58 (2014)
[38] Tayebi, Ali; Shekari, Younes; Heydari, Mohammad Hossein, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) · Zbl 1380.65185
[39] Wei, Leilei; Zhai, Shuying; Zhang, Xindong, Error estimate of a fully discrete local discontinuous Galerkin method for variable-order time-fractional diffusion equations, Commun. Appl. Math. Comput. Sci., 3, 3, 429-443 (2021) · Zbl 1499.65538
[40] Wei, Song; Chen, Wen; Zhang, Yong; Wei, Hui; Garrard, Rhiannon M., A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain, Numer. Methods Partial Differ. Equ., 34, 4, 1209-1223 (2018) · Zbl 1407.65231
[41] Zaky, Mahmoud A., A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37, 3, 3525-3538 (2018) · Zbl 1404.65204
[42] Zayernouri, Mohsen; Karniadakis, George Em, Fractional spectral collocation methods for linear and nonlinear variable order fpdes, J. Comput. Phys., 293, 312-338 (2015) · Zbl 1349.65531
[43] Zhao, Lijing; Deng, Weihua, A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives, Numer. Methods Partial Differ. Equ., 31, 5, 1345-1381 (2015) · Zbl 1332.65131
[44] Zhuang, Pinghui; Liu, Fawang; Anh, Vo; Turner, Ian, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781 (2009) · Zbl 1204.26013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.