×

A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. (English) Zbl 1332.65131

The authors are concerned with some high-order quasi-compact schemes for space fractional diffusion equations. The approach relies on the superconvergence of the Grunvald approximation to the Riemann-Liouville derivative at a special point. The stability and convergence analysis is further investigated. Numerical experiments are presented that support the theoretical findings.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

FODE

References:

[1] E.Barkai, R.Metzler, and J.Klafter, From continuous time random walks to the fractional Fokker‐Planck equation, Phys Rev E61 (2000), 132-138.
[2] A.Blumen, G.Zumofen, and J.Klafter, Transport aspects in anomalous diffusion: Lévy walks, Phys Rev A40 (1989), 3964-3973.
[3] J.Bouchaud and A.Georges, Anomalous diffusion in disordered media‐statistical mechanisms, models and physical applications, Phys Rep195 (1990), 127-293.
[4] A.Chaves, Fractional diffusion equation to describe Lévy flights, Phys Lett A239 (1998), 13‐16. · Zbl 1026.82524
[5] J.Klafter, A.Blumen, and M.Shlesinger, Stochastic pathways to anomalous diffusion, Phys Lett A35 (1987), 3081-3085.
[6] M.Meerschaert, D.Benson, H.ScheXer, and B.Baeumer, Stochastic solution of space‐time fractional diffusion equations, Phys Rev E65 (2002), 1103-1106. · Zbl 1244.60080
[7] A.Saichev, and G.Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos7 (1997), 753-764. · Zbl 0933.37029
[8] M.Raberto, E.Scalas, and F.Mainardi, Waiting‐times and returns in high‐frequency financial data: an empirical study, Phys A314 (2002), 749-755. · Zbl 1001.91033
[9] L.Sabatelli, S.Keating, J.Dudley, and P.Richmond, Waiting time distributions in financial markets, Eur Phys J B27 (2002), 273-275.
[10] D.Benson, S.Wheatcraft, and M.Meerschaert, The fractional‐order governing equation of Lévy motion, Water Resour Res36 (2000), 1413-1424.
[11] R.Schumer, D.Benson, M.Meerschaert, and B.Baeumer, Multiscaling fractional advection‐dispersion equations and their solutions, Water Resour Res39 (2003), 1422-1032.
[12] A.Chechkin, R.Goreno, and I.Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed‐order fractional diffusion equations, Phys Rev E66 (2002), 046129.
[13] N.Krepysheva, L.Pietro, and M.Néel, Space‐fractional advection‐diffusion and reflective boundary condition, Phys Rev E73 (2006), 021104.
[14] D.Negrete, B.Carreras, and V.Lynch, Front dynamics in reaction‐diffusion systems with Levy flights: a fractional diffusion approach, Phys Rev Lett91 (2003), 018302.
[15] C.Celik and M.Duman, Crank‐Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J Comput Phys231 (2012), 1743-1750. · Zbl 1242.65157
[16] W.Deng, Numerical algorithm for the time fractional Fokker‐Planck equation, J Comput Phys227 (2007), 1510-1522. · Zbl 1388.35095
[17] M.Meerschaert and C.Tadjeran, Finite difference approximations for fractional advection‐dispersion flow equations, J. Comput. Appl. Math.172 (2004), 65-77. · Zbl 1126.76346
[18] Q.Yang, F.Liu, and I.Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl Math Model34 (2010), 200-218. · Zbl 1185.65200
[19] L.Zhao and W.Deng, Jacobian‐predictor‐corrector approach for fractional differential equations, Adv Comput Math40 (2014), 137-165. · Zbl 1322.65079
[20] I.Podlubny, Fractional differential equations, Academic press, San Diego, 1999. · Zbl 0924.34008
[21] E.Sousa and C.Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann‐Liouville derivative, arXiv:1109.2345 [math.NA].
[22] M.Chen and W.Deng, A second‐order numerical method for two‐dimensional two‐sided space fractional convection diffusion equation, Appl Math Model38 (2014), 3244-3259. · Zbl 1427.65149
[23] W.Tian, H.Zhou, and W.Deng, A class of second order difference approximations for solving space fractional diffusion Equations, Math Comp, to appear. · Zbl 1318.65058
[24] C.Li and W.Deng, Second order WSGD operators II: a new family of difference schemes for space fractional advection diffusion equation, arXiv:1310.7671 [math.NA].
[25] B.Baeumer, M.Kovács, and H.Sankaranarayanan, Higher order Grünwald approximations of fractional derivatives and fractional powers of operators, Trans. Amer. Math. Soc.367 (2015), 813-834. · Zbl 1308.65149
[26] H.Zhou, W.Tian, and W.Deng, Quasi‐compact finite difference schemes for space fractional diffusion equations, J Sci Comput56 (2013), 45-66. · Zbl 1278.65130
[27] M.Chen and W.Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J Numer Anal52 (2014), 1418-1438. · Zbl 1318.65048
[28] K.Oldham and I.Spanier, The fractional calculus, Academic Press, New York, 1974. · Zbl 0292.26011
[29] H.Nasir, B. K.Gunawardana, and H. M. N. P.Abeyrathna, A second order finite difference approximation for the fractional diffusion equation, Int J Appl Phys Math3 (2013), 237-243.
[30] M.Chen and W.Deng, High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights, arXiv:1406.1868 [math.NA].
[31] S.Samko, A.Kilbas, and O.Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Yverdon, 1993. · Zbl 0818.26003
[32] C.Tadjeran, M.Meerschaert, and H. P.Scheffler, A second‐order accurate numerical approximation for the fractional diffusion equation, J Comput Phys213 (2006), 205-213. · Zbl 1089.65089
[33] A.Quarteroni, R.Sacco, and F.Saleri, Numerical mathematics, 2nd Ed., Springer‐Verlag, New York, 2007. · Zbl 1136.65001
[34] R.Chan and X.Jin, An introduction to iterative toeplitz solvers, SIAM, Philadelphia, 2007. · Zbl 1146.65028
[35] R.Chan, Toeplitz preconditioners for toeplitz systems with nonnegative generating functions, IMA J Numer Anal11 (1991), 333-345. · Zbl 0737.65022
[36] D.Yu and H.Tang, numerical methods for solution of differential equations, 2nd Ed., Science Press, Beijing, 2004 (in Chinese).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.