×

A compact finite difference scheme for variable order subdiffusion equation. (English) Zbl 1524.65323

Summary: In this paper, we consider a variable order time subdiffusion equation. A Crank-Nicolson type compact finite difference scheme with second order temporal accuracy and fourth order spatial accuracy is presented. The stability and convergence of the scheme are strictly proved by using the discrete energy method. Finally, some numerical examples are provided, the results confirm the theoretical analysis and demonstrate the effectiveness of the compact difference method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] Chaves, A., A fractional diffusion equation to describe lévy flights, Phys Lett A, 239, 1, 13-16 (1998) · Zbl 1026.82524
[2] Giona, M.; Roman, H. E., Fractional diffusion equation for transport phenomena in random media, Physica A, 185, 1, 87-97 (1992)
[3] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1, 1-77 (2000) · Zbl 0984.82032
[4] Magin, R. L., Fractional calculus in bioengineering, 149 (2006), Begell House Publishers Redding
[5] Magin, R. L.; Abdullah, O.; Baleanu, D.; Zhou, X. J., Anomalous diffusion expressed through fractional order differential operators in the bloch-torrey equation, J Magn Reson, 190, 2, 255-270 (2008)
[6] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press New York · Zbl 0924.34008
[7] Yuste, S. B., Weighted average finite difference methods for fractional diffusion equations, J Comput Phys, 216, 1, 264-274 (2006) · Zbl 1094.65085
[8] Langlands, T.; Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J Comput Phys, 205, 2, 719-736 (2005) · Zbl 1072.65123
[9] Chen, C. M.; Liu, F.; Turner, I.; Anh, V., A fourier method for the fractional diffusion equation describing sub-diffusion, J Comput Phys, 227, 2, 886-897 (2007) · Zbl 1165.65053
[10] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J Comput Phys, 225, 2, 1533-1552 (2007) · Zbl 1126.65121
[11] Cui, M., Compact finite difference method for the fractional diffusion equation, J Comput Phys, 228, 20, 7792-7804 (2009) · Zbl 1179.65107
[12] Gao, G. H.; Sun, Z. Z., A compact finite difference scheme for the fractional sub-diffusion equations, J Comput Phys, 230, 3, 586-595 (2011) · Zbl 1211.65112
[13] Zeng, F. H.; Li, C. P.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J Scientific Comput, 37, 1, A55-A78 (2015) · Zbl 1334.65162
[14] Gao, G. H.; Sun, Z. Z.; Zhang, H. W., A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications, J Comput Phys, 259, 33-50 (2014) · Zbl 1349.65088
[15] Li, C. P.; Wu, R. F.; Ding, H. F., High-order approximation to caputo derivative and caputo-type advection-diffusion equation, Commun Appl Indus Math, 6, 2 (2014)
[16] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J Comput Phys, 280, 424-438 (2015) · Zbl 1349.65261
[17] Cao, J. X.; Li, C. P.; Chen, Y. Q., High-order approximation to caputo derivative and caputo-type advection-diffusion equation \((II)\), Fract Calc Appl Analy, 18, 3, 735-761 (2015) · Zbl 1325.65121
[18] Chechkin, A.; Gorenflo, R.; Sokolov, I., Fractional diffusion in inhomogeneous media, J Phys A, 38, 42, L679 (2005) · Zbl 1082.76097
[19] Sun, H. G.; Chen, W.; Li, C. P.; Chen, Y. Q., Finite difference schemes for variable-order time fractional diffusion equation, Int J Bifurcation Chaos, 22, 04, 1250085 (2012) · Zbl 1258.65079
[20] Sun, H. G.; Chen, W.; Chen, Y. Q., Variable-order fractional differential operators in anomalous diffusion modeling, Physica A, 388, 21, 4586-4592 (2009)
[21] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn, 29, 1-4, 57-98 (2002) · Zbl 1018.93007
[22] Kobelev, Y. L.; Kobelev, L. Y.; Klimontovich, Y. L., Statistical physics of dynamic systems with variable memory, Doklady Physics, vol. 48, 285-289 (2003) · Zbl 1073.82569
[24] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl Math Comput, 212, 2, 435-445 (2009) · Zbl 1171.65101
[25] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J Numer Anal, 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[26] Chen, C. M.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J Scientific Comput, 32, 4, 1740-1760 (2010) · Zbl 1217.26011
[27] Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl Math Comput, 218, 22, 10861-10870 (2012) · Zbl 1280.65089
[28] Zeng, F. H.; Zhang, Z. Q.; Karniadakis, G. E., A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations, SIAM J Scientific Comput, 37, 6, A2710-A2732 (2015) · Zbl 1339.65197
[29] Wang, Z.; Vong, S., Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J Comput Phys, 277, 1-15 (2014) · Zbl 1349.65348
[30] Samko, S. G.; Ross, B., Integration and differentiation to a variable fractional order, Integral Transf Special Funct, 1, 4, 277-300 (1993) · Zbl 0820.26003
[31] Cao, J. X.; Qiu, Y. N., A high order numerical scheme for variable order fractional ordinary differential equation, Appl Math Lett, 61, 88-94 (2016) · Zbl 1347.65119
[32] Ji, C. C.; Sun, Z. Z., A high-order compact finite difference scheme for the fractional sub-diffusion equation, J Sci Comput, 64, 3, 959-985 (2015) · Zbl 1328.65176
[33] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J Comput Phys, 293, 312-338 (2015) · Zbl 1349.65531
[34] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, 23 (2008), Springer Science & Business Media · Zbl 1151.65339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.