×

Polydispersity and surface energy strength in nematic colloids. (English) Zbl 07511703

Summary: We consider a Landau-de Gennes model for a polydisperse, inhomogeneous suspension of colloidal inclusions in a nematic host, in the dilute regime. We study the homogenised limit and compute the effective free energy of the composite material. By suitably choosing the shape of the inclusions and imposing a quadratic, Rapini-Papoular type surface anchoring energy density, we obtain an effective free energy functional with an additional linear term, which may be interpreted as an “effective field” induced by the inclusions. Moreover, we compute the effective free energy in a regime of “very strong anchoring”, that is, when the surface energy effects dominate over the volume free energy.

MSC:

82-XX Statistical mechanics, structure of matter
35-XX Partial differential equations

References:

[1] Alama S.; Bronsard L.; Lamy X., Minimizers of the Landau-de Gennes energy around a spherical colloid particle, Arch Ration Mech An, 222, 427-450 (2016) · Zbl 1350.35148 · doi:10.1007/s00205-016-1005-z
[2] Alama S.; Bronsard L.; Lamy X., Spherical particle in nematic liquid crystal under an external field: The Saturn ring regime, J Nonlinear Sci, 28, 1443-1465 (2018) · Zbl 1397.35092 · doi:10.1007/s00332-018-9456-z
[3] Alexe-Ionescu AL; Barberi R.; Barbero G.; et al., Surface energy for nematic liquid crystals: A new point of view, Z Naturforsch A, 47, 1235-1240 (1992) · doi:10.1515/zna-1992-1210
[4] Ball JM; Zarnescu A., Orientability and energy minimization in liquid crystal models, Arch Ration Mech An, 202, 493-535 (2011) · Zbl 1263.76010 · doi:10.1007/s00205-011-0421-3
[5] Bennett TP; D’Alessandro G.; Daly KR, Multiscale models of colloidal dispersion of particles in nematic liquid crystals, Phys Rev E, 90, 062505 (2014)
[6] Berlyand L.; Cioranescu D.; Golovaty D., Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions, J Math pure Appl, 84, 97-136 (2005) · Zbl 1162.35316 · doi:10.1016/j.matpur.2004.09.013
[7] Calderer MC; DeSimone A.; Golovaty D.; et al., An effective model for nematic liquid crystal composites with ferromagnetic inclusions, SIAM J Appl Math, 74, 237-262 (2014) · Zbl 1302.35036 · doi:10.1137/130910348
[8] Canevari G.; Ramaswamy M.; Majumdar A., Radial symmetry on three-dimensional shells in the Landau-de Gennes theory, Physica D, 314, 18-34 (2016) · Zbl 1364.76012 · doi:10.1016/j.physd.2015.09.013
[9] Canevari G.; Segatti A.; Veneroni M., Morse’s index formula in VMO on compact manifold with boundary, J Funct Anal, 269, 3043-3082 (2015) · Zbl 1366.53069 · doi:10.1016/j.jfa.2015.09.005
[10] Canevari G.; Segatti A., Defects in Nematic Shells: A Γ-convergence discrete-to-continuum approach, Arch Ration Mech An, 229, 125-186 (2018) · Zbl 1401.82047 · doi:10.1007/s00205-017-1215-z
[11] Canevari G.; Segatti A., Variational analysis of nematic shells, In: Trends in Applications of Mathematics to Mechanics, Cham: Springer, 81-102 (2018) · Zbl 1407.49020
[12] Canevari G.; Zarnescu AD, Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation, Math Mod Meth Appl Sci doi: 10.1142/S0218202520500086 (2019) · Zbl 1440.35097
[13] De Gennes PG; Prost J., <i>The Physics of Liquid Crystals</i>, Oxford university press (1993)
[14] Gartland Jr EC, Scalings and Limits of Landau-de Gennes Models for Liquid Crystals: A Comment on Some Recent Analytical Papers, Math Model Anal, 23, 414-432 (2018) · Zbl 1488.82019 · doi:10.3846/mma.2018.025
[15] Goossens JW, Bulk, Interfacial and Anchoring Energies of Liquid Crystals, Mol Cryst Liq Cryst, 124, 305-331 (1985) · doi:10.1080/00268948508079485
[16] Kurochkin O.; Atkuri H.; Buchnev O.; et al., Nano-colloids of sn2P2S6 in nematic liquid crystal pentyl-cianobiphenile, Condens Matter Phys, 13, 33701 (2010) · doi:10.5488/CMP.13.33701
[17] Lavrentovich O.; Lev B.; Trokhymchuk A., Liquid crystal colloids, Condens Matter Phys, 13, 30101 (2010)
[18] Lax PD, <i>Functional Analysis, Pure and Applied Mathematics: A Wiley Series of Texts,</i> <i>Monographs and Tracts</i>, Wiley (2002) · Zbl 1009.47001
[19] Li F.; Buchnev O.; Cheon CI; et al., Orientational coupling amplification in ferroelectric nematic colloids, Phys Rev letter, 97, 147801 (2006) · doi:10.1103/PhysRevLett.97.147801
[20] Longa L.; Montelesan D.; Trebin HR, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals, Liq Cryst, 2, 769-796 (1987) · doi:10.1080/02678298708086335
[21] Mottram NJ; Newton CJP, Introduction to Q-tensor theory, arXiv:1409.3542. (2014)
[22] Nguyen L.; Zarnescu A., Refined approximation for minimizers of a Landau-de Gennes energy functional, Calc Var Partial Dif, 47, 383-432 (2013) · Zbl 1273.35260 · doi:10.1007/s00526-012-0522-3
[23] Ravnik M.; Žumer S., Landau-de Gennes modelling of nematic liquid crystal colloids, Liq Cryst, 36, 1201-1214 (2009) · doi:10.1080/02678290903056095
[24] Rey A., Generalized nematostatics, Liq Cryst, 28, 549-556 (2001) · doi:10.1080/02678290010017980
[25] Reznikov Y.; Buchnev O.; Tereshchenko O.; et al., Ferroelectric nematic suspension, Appl Phys Lett, 82, 1917-1919 (2003) · doi:10.1063/1.1560871
[26] Sluckin TJ; Poniewierski A., <i>Fluid and Interfacial Phenomena</i>, Chichester: John Wiley (1984)
[27] Smalyukh II, Liquid crystal colloids, Annu Rev Condens Matter Phys, 9, 207-226 (2018) · doi:10.1146/annurev-conmatphys-033117-054102
[28] Wang Y.; Canevari G.; Majumdar A., Order reconstruction for nematics on squares with isotropic inclusions: A Landau-de Gennes study, SIAM J Appl Math, 79, 1314-1340 (2019) · Zbl 1473.35568 · doi:10.1137/17M1179820
[29] Wang Y.; Zhang P.; Chen JZY, Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles, Phys Rev E, 96, 042702 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.