×

Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions. (English) Zbl 1162.35316

The authors consider a nonlinear homogenization problem relative to a Ginzburg-Landau functional with a (positive or negative) surface energy term, which describes a nematic liquid crystal with inclusions. The inclusions are separated by distances of the same order \(\epsilon\) of their size and Have periodic or non-periodic distribution. The authors show that the corresponding homogenized problem is described by an anisotropic Ginzburg-Landau functional. Computational formulas for the effective material characteristic of an effective medium are obtained. The authors prove also that a cross-term corresponding to interactions between the bulk and the surface energy terms does not appear at the leading order in the homogenized problem.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J20 Variational methods for second-order elliptic equations
82D25 Statistical mechanics of crystals
76M50 Homogenization applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Bakhvalov, N.; Panasenko, G., Homogenization of Processes in Periodic Media (1984), Nauka: Nauka Moscow · Zbl 0607.73009
[2] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis of Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0411.60078
[3] Berlyand, L., Averaging of elasticity equations in domains with fine-grained boundaries. Part 1, Func. Theory, Func. Anal. Appl., 39, 16-25 (1983), in Russian · Zbl 0572.73026
[4] Berlyand, L., Averaging of elasticity equations in domains with fine-grained boundaries. Part 2, Func. Theory, Func. Anal. Appl., 40, 16-23 (1983), in Russian · Zbl 0567.73024
[5] Berlyand, L., Asymptotic behavior of solutions for mixed boundary value problems in domains with fine-grained boundaries, Complex Methods in Mathematical Physics, 123 (1983), All-Union Young Scientists School Reports, Donetsk, in Russian
[6] Berlyand, L., Homogenization of the Ginzburg-Landau functional with a surface energy term, Asympt. Anal., 21, 37-59 (1999) · Zbl 0946.35009
[7] Berlyand, L.; Goncharenko, M. V., Averaging of a diffusion equation in a porous medium with weak absorption, Teor. Funktsiı̆ Funktsional. Anal. i Prilozhen.. Teor. Funktsiı̆ Funktsional. Anal. i Prilozhen., J. Soviet Math., 53, 3428-3435 (1990), English translation in · Zbl 0900.76637
[8] L. Berlyand, E.J. Khruslov, Competition between the surface and the boundary energies in a Ginzburg-Landau model of a liquid crystal composite, Asymptot. Anal., 2001, submitted for publication; L. Berlyand, E.J. Khruslov, Competition between the surface and the boundary energies in a Ginzburg-Landau model of a liquid crystal composite, Asymptot. Anal., 2001, submitted for publication · Zbl 1217.76013
[9] L. Berlyand, E.J. Khruslov, Homogenized non-Newtonian viscoelastic rheology of suspension of interaction particles in a viscous Newtonian fluid, Preprint, 2002; L. Berlyand, E.J. Khruslov, Homogenized non-Newtonian viscoelastic rheology of suspension of interaction particles in a viscous Newtonian fluid, Preprint, 2002 · Zbl 1054.76081
[10] Bethuel, F.; Brezis, H.; Hélein, F., Ginzburg-Landau Vortices (1994), Birkhäuser: Birkhäuser Boston · Zbl 0802.35142
[11] Cioranescu, D.; Donato, P., Homogénéisation du problème de Neumann non-homogène dans des ouverts perforés, Asymptot. Anal., 1, 115-138 (1988) · Zbl 0683.35026
[12] Cioranescu, D.; Donato, P., On a Robin problem in perforated domains, (Cioranescu, D.; Damlamian, A.; Donato, P., Homogenization and Appl. to Material Sci.. Homogenization and Appl. to Material Sci., Gakuto Internat. Ser., Math. Sci. Appl., vol. 9 (1997), Gakkokotosho), 123-135 · Zbl 0900.35040
[13] Crawford, G.; Doane, J.; Žumer, S., Polymer dispersed liquid crystals: nematic droplets and related systems, Handbook of Liquid Crystal Research (1997), Oxford Univ. Press: Oxford Univ. Press London
[14] Drzaic, P. S., Liquid Crystal Dispersions (1995), World Scientific: World Scientific Singapore
[15] Ericksen, J. L., Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113, 1067-1074 (1991) · Zbl 0729.76008
[16] Hruslov, E. J., Asymptotic behavior of the solutions of the second boundary value problem in the case of the refinement of the boundary of the domain, Mat. Sb., 106, 604-621 (1978)
[17] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0801.35001
[18] Kreuzer, M.; Tschudi, T.; Eidenschink, R., Erasable optical storage in bistable liquid crystal cells, Mol. Cryst. Liq. Cryst., 223, 219-227 (1992)
[19] Kreuzer, M.; Tschudi, T.; Jeu, W. H.; Eidenschink, R., New liquid crystal display with bistability and selective erasure using scattering in filled nematics, Appl. Phys. Lett., 62, 15, 1712-1714 (1993)
[20] Ladyzhenskaya, O. A.; Ural’tseva, N. N., Linear and Quasilinear Elliptic Equations (1973), Academic Press: Academic Press New York · Zbl 0269.35029
[21] Lubensky, T. C.; Pettey, D.; Currier, N.; Stark, H., Topological defects and interactions in nematic emulsions, Phys. Rev. E, 1, 57, 610-625 (1998)
[22] Meeker, S. P.; Poon, W. C.K.; Crain, J.; Terentjev, E. M., Colloid-liquid-crystal composites: an unusual soft solid, Phys. Rev. E, 61, 6083-6086 (2000)
[23] Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0432.70002
[24] Virga, E., Variational Theories for Liquid Crystals (1994), Chapman and Hall: Chapman and Hall London · Zbl 0814.49002
[25] Yang, D. K.; Chien, C.; Doane, J., Cholesteric liquid crystal/polymer dispersion for haze free light shutters, Appl. Phys. Lett., 60, 3102-3104 (1992)
[26] Zapotocky, M.; Ramos, L.; Poulin, P.; Lubensky, T. C.; Weitz, D. A., Particle-stabilized defect gel in cholesteric liquid crystals, Science, 283, 209-212 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.