×

Defects in nematic shells: a \(\Gamma\)-convergence discrete-to-continuum approach. (English) Zbl 1401.82047

A nematic shell is a rigid colloidal particle with a typical dimension in the micrometer scale coated with a thin film of nematic liquid crystal whose molecular orientation is subjected to a tangential anchoring. In this paper, the authors investigate the emergence of defects on nematic shells with a genus different from one. This phenomenon is related to a non-trivial interplay between the topology of the shell and the alignment of the director field. Defects emerge when the mesh size of the triangulation goes to zero, namely in the discrete-to-continuum limit. The discrete-to-continuum limit in two different asymptotic regimes is investigated. The first scaling promotes the appearance of a finite number of defects and the second scaling produces the so-called renormalized energy that governs the equilibrium of the configurations with defects.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
76A15 Liquid crystals
35Q35 PDEs in connection with fluid mechanics

Software:

Triangle

References:

[1] Alicandro, R; Cicalese, M, Variational analysis of the asymptotics of the \(XY\) model, Arch. Ration. Mech. Anal., 192, 501-536, (2009) · Zbl 1171.82004 · doi:10.1007/s00205-008-0146-0
[2] Alicandro, R; Luca, L; Garroni, A; Ponsiglione, M, Metastability and dynamics of discrete topological singularities in two dimensions: a \(Γ \)-convergence approach, Arch. Ration. Mech. Anal., 214, 269-330, (2014) · Zbl 1305.82013 · doi:10.1007/s00205-014-0757-6
[3] Alicandro, R; Ponsiglione, M, Ginzburg-Landau functionals and renormalized energy: a revised \(Γ \)-convergence approach, J. Funct. Anal., 266, 4890-4907, (2014) · Zbl 1307.35287 · doi:10.1016/j.jfa.2014.01.024
[4] Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Ap., 12(01n02), 125-141, 2002 · Zbl 1152.68653
[5] Aubin, T.: Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer, Berlin (1998) · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[6] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4), 337-403, 1976/77 · Zbl 0368.73040
[7] Ball, J.M.: Mathematics and liquid crystals. arXiv:1612.0379v2, 2016
[8] Ball, J.M.: Liquid crystals and their defects. arXiv, arXiv:1706.06861v3, 2017 · Zbl 1393.35157
[9] Baraket, S, Critical points of the Ginzburg-Landau system on a Riemannian surface, Asymptotic Anal., 13, 277-317, (1996) · Zbl 0884.58024
[10] Bartels, S.: Finite Elements Approximation of Harmonic Maps between Surfaces. Habilitation thesis, Humboldt-Universität, Berlin, 2009
[11] Berezinskii, VL, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. i. classical systems, J. Exp. Theor. Phys., 61, 1144, (1972)
[12] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994 · Zbl 0802.35142
[13] Bourgain, J; Brezis, H; Mironescu, P, Lifting in Sobolev spaces, J. Anal. Math., 80, 37-86, (2000) · Zbl 0967.46026 · doi:10.1007/BF02791533
[14] Bowick, MJ; Giomi, L, Two-dimensional matter: order, curvature and defects, Adv. Phys., 58, 449-563, (2009) · doi:10.1080/00018730903043166
[15] Bowick, M.J., Nelson, D., Travesset, A.: Curvature-induced defect unbinding in toroidal geometries. Phys. Rev. E,69, 041102, Apr 2004 · Zbl 1034.58016
[16] Braides, A; Cicalese, M; Solombrino, F, \(Q\)-tensor continuum energies as limits of head-to-tail symmetric spin systems, SIAM J. Math. Anal., 47, 2832-2867, (2015) · Zbl 1321.49024 · doi:10.1137/130941341
[17] Canevari, G., Segatti, A.: Variational analysis of nematic shells. In: Trends on Applications of Mathematics to Mechanics, volume to appear. Springer-Indam Series, 2017 · Zbl 1401.82047
[18] Canevari, G; Segatti, A; Veneroni, M, Morse’s index formula in VMO for compact manifolds with boundary, J. Funct. Anal., 269, 3043-3082, (2015) · Zbl 1366.53069 · doi:10.1016/j.jfa.2015.09.005
[19] Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4 · Zbl 0383.65058
[20] Contreras, A; Sternberg, P, Gamma-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds, Calc. Var. Partial Differential Equations, 38, 243-274, (2010) · Zbl 1193.49053 · doi:10.1007/s00526-009-0285-7
[21] Dávila, J; Ignat, R, Lifting of BV functions with values in \(S^1\), C. R. Math. Acad. Sci. Paris, 337, 159-164, (2003) · Zbl 1046.46026 · doi:10.1016/S1631-073X(03)00314-5
[22] Luca, L, \(Γ \)-convergence analysis for discrete topological singularities: the anisotropic triangular lattice and the long range interaction energy, Asymptot. Anal., 96, 185-221, (2016) · Zbl 1348.82018 · doi:10.3233/ASY-151334
[23] do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty · Zbl 0752.53001
[24] Hildebrandt, K; Polthier, K; Wardetzky, M, On the convergence of metric and geometric properties of polyhedral surfaces, Geom. Dedicata, 123, 89-112, (2006) · Zbl 1125.52014 · doi:10.1007/s10711-006-9109-5
[25] Ignat, R., Jerrard, R.: Interaction energy between vortices of vector fields on riemannian surfaces. arXiv:1701.06546, 2017 · Zbl 1368.35255
[26] Ignat, R., Jerrard, R.: Renormalized energy between vortices in some Ginzburg-Landau models on riemannian surfaces. preprint, 2017
[27] Jerrard, RL, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal., 30, 721-746, (1999) · Zbl 0928.35045 · doi:10.1137/S0036141097300581
[28] Jerrard, RL; Soner, HM, Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci. Paris Sér. I Math., 329, 683-688, (1999) · Zbl 0946.49033 · doi:10.1016/S0764-4442(00)88217-8
[29] Jerrard, RL; Soner, HM, The Jacobian and the Ginzburg-Landau energy, Cal. Var. Partial Differential Equations, 14, 151-191, (2002) · Zbl 1034.35025 · doi:10.1007/s005260100093
[30] Kibble, T.W.B.: Symmetry breaking and defects. In: Patterns of Symmetry Breaking, volume 127 of NATO Science Series, pages 3-36. Springer, Berlin, 2003. · Zbl 0946.49033
[31] Kosterlitz, JM; Thouless, DJ, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 6, 1181, (1973) · doi:10.1088/0022-3719/6/7/010
[32] Lee, John M.: Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013 · Zbl 1258.53002
[33] Lubensky, TC; Prost, J, Orientational order and vesicle shape, J. Phys. II France, 2, 371-382, (1992) · doi:10.1051/jp2:1992133
[34] Müller, S, \({\rm Det}={\rm det}\). A remark on the distributional determinant, C. R. Acad. Sci. Paris Sér. I Math., 311, 13-17, (1990) · Zbl 0717.46033
[35] Mutz, M., Bensimon, D.: Observation of toroidal vesicles. Phys. Rev. A, 43, 4525-4527 Apr 1991 · Zbl 1348.82018
[36] Napoli, G; Vergori, L, Extrinsic curvature effects on nematic shells, Phys. Rev. Lett., 108, 207803, (2012) · doi:10.1103/PhysRevLett.108.207803
[37] Napoli, G; Vergori, L, Surface free energies for nematic shells, Phys. Rev. E, 85, 061701, (2012) · doi:10.1103/PhysRevE.85.061701
[38] Nelson, DR, Toward a tetravalent chemistry of colloids, Nano Lett., 2, 1125-1129, (2002) · doi:10.1021/nl0202096
[39] Qing, J, Renormalized energy for Ginzburg-Landau vortices on closed surfaces, Math. Z., 225, 1-34, (1997) · Zbl 0871.49035 · doi:10.1007/PL00004303
[40] Sandier, É.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal., 152(2), 379-403, 1998. see Erratum, ibidem 171, 1 (2000), 233 · Zbl 0908.58004
[41] Sandier, É., Serfaty, S.: Vortices in the magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, 70. Birkhäuser Boston, Inc., Boston, MA, 2007 · Zbl 1112.35002
[42] Sandier, É; Serfaty, S, Improved lower bounds for Ginzburg-Landau energies via mass displacement, Anal. PDE, 4, 757-795, (2011) · Zbl 1270.35150 · doi:10.2140/apde.2011.4.757
[43] Sandier, E, Ginzburg-Landau minimizers from \(\mathbb{R}^{n+1}\) to \(\mathbb{R}^n\) and minimal connections, Indiana Univ. Math. J., 50, 1807-1844, (2001) · Zbl 1034.58016 · doi:10.1512/iumj.2001.50.1751
[44] Schoen, R; Uhlenbeck, K, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18, 253-268, (1983) · Zbl 0547.58020 · doi:10.4310/jdg/1214437663
[45] Segatti, A.: Variational models for nematic shells. Lecture Notes for a PhD course at Universidad Autónoma de Madrid, 2015 · Zbl 1171.82004
[46] Segatti, A; Snarski, M; Veneroni, M, Equilibrium configurations of nematic liquid crystals on a torus, Phys. Rev. E, 90, 012501, (2014) · doi:10.1103/PhysRevE.90.012501
[47] Segatti, A; Snarski, M; Veneroni, M, Analysis of a variational model for nematic shells, Math. Models Methods Appl. Sci., 26, 1865-1918, (2016) · Zbl 1345.35126 · doi:10.1142/S0218202516500470
[48] Selinger, R.L., Konya, A., Travesset, A., Selinger, J.V.: Monte Carlo studies of the XY model on two-dimensional curved surfaces. J.Phys.Chem B, 48, 12989-13993, 2011 · Zbl 0884.58024
[49] Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comp. Geom. Theor. Appl., 22(1-3):21-74, 2002. 16th ACM Symposium on Computational Geometry · Zbl 1016.68139
[50] Straley, JP, Liquid crystals in two dimensions, Phys. Rev. A, 4, 675-681, (1971) · doi:10.1103/PhysRevA.4.675
[51] Virga, E.G.: Variational theories for liquid crystals. Applied Mathematics and Mathematical Computation, vol. 8. Chapman & Hall, London (1994) · Zbl 0814.49002
[52] Vitelli, V; Nelson, D, Nematic textures in spherical shells, Phys. Rev. E, 74, 021711, (2006) · doi:10.1103/PhysRevE.74.021711
[53] Vitelli, V., Nelson, D.R.: Defect generation and deconfinement on corrugated topographies. Phys. Rev. E, 70, 051105 Nov 2004 · Zbl 1307.35287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.