×

Strong convergence theorem for a new Bregman extragradient method with a different line-search process for solving variational inequality problems in reflexive Banach spaces. (English) Zbl 1543.90287

Summary: In this paper, we introduce a new Bregman extragradient method with a different line-search process for solving variational inequality problems in reflexive Banach spaces. Precisely, we prove that the sequence generated by our proposed iterative algorithm converges strongly to an element of the solution sets of variational inequality problems. Moreover, some numerical examples are given to show the effectiveness of the proposed algorithm. The results obtained in this paper extend and improve many recent ones in the literature.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
47H05 Monotone operators and generalizations
47J25 Iterative procedures involving nonlinear operators
47H10 Fixed-point theorems
65J15 Numerical solutions to equations with nonlinear operators
65K15 Numerical methods for variational inequalities and related problems
Full Text: DOI

References:

[1] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, 1980, New York: Academic Press, New York · Zbl 0457.35001
[2] Maingé, PE, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47, 1499-1515, 2008 · Zbl 1178.90273
[3] Iusem, AN; Nasri, M., Korpelevich method for variational inequality problems in Banach spaces, J. Glob. Optim., 50, 59-76, 2011 · Zbl 1226.49010
[4] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26, 827-845, 2011 · Zbl 1232.58008
[5] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119-1132, 2012 · Zbl 1260.65056
[6] Kraikaew, R.; Saejung, S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163, 399-412, 2014 · Zbl 1305.49012
[7] Malitsky, YV, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25, 502-520, 2015 · Zbl 1314.47099
[8] Gibali, A.; Reich, S.; Zalas, R., Outer approximation methods for solving vaiational inequalities in Hilbert space, Optimization, 66, 417-437, 2017 · Zbl 1367.58006
[9] Cegielski, A.; Gibali, A.; Reich, S.; Zalas, R., Outer approximation methods for solving variational inequalities defined over the solution set of a split convex feasibility problem, Numer. Funct. Anal. Optim., 41, 1089-1108, 2020 · Zbl 1446.47062
[10] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Matecon, 12, 747-756, 1976 · Zbl 0342.90044
[11] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335, 2011 · Zbl 1229.58018
[12] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38, 431-446, 2000 · Zbl 0997.90062
[13] Thong, DV; Vinh, NT; Cho, YJ, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput., 80, 1438-1462, 2019 · Zbl 1530.65190
[14] Thong, DV; Shehu, Y.; Iyiola, OS, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer. Algorithms, 84, 795-823, 2020 · Zbl 1439.47047
[15] Thong, DV; Triet, NA; Li, XH; Dong, QL, Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems, Numer. Algorithms, 83, 1123-1143, 2020 · Zbl 1444.47073
[16] Thong, DV; Vinh, NT; Cho, YJ, A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems, Optim Lett., 14, 1157-1175, 2020 · Zbl 1445.49005
[17] Dong, QL; Cho, YJ; Zhong, LL; Rassias, TM, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70, 687-704, 2018 · Zbl 1390.90568
[18] Dong, QL; Yuan, HB; Cho, YJ; Rassias, TM, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12, 87-102, 2018 · Zbl 1462.65058
[19] Cai, G.; Gibali, A.; Iyiola, OS; Shehu, Y., A new double-projection method for solving variational inequalities in Banach spaces, J. Optim. Theory Appl., 178, 219-239, 2018 · Zbl 06931888
[20] Shehu, Y.; Iyiola, OS, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19, 2483-2510, 2017 · Zbl 1493.47100
[21] Shehu, Y.; Iyiola, OS, Iterative algorithms for solving fixed point problems and variational inequalities with uniformly continuous monotone operators, Numer. Algorithms, 79, 529-553, 2018 · Zbl 06945627
[22] Shehu, Y.; Dong, Q-L; Jiang, D., Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68, 385-409, 2019 · Zbl 1431.49009
[23] Shehu, Y.; Gibali, A.; Sagratella, S., Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces, J. Optim. Theory Appl., 184, 877-894, 2020 · Zbl 1513.47131
[24] Shehu, Y.; Liu, LL; Mu, XW; Dong, Q-L, Analysis of versions of relaxed inertial projection and contraction method, Appl. Numer. Math., 165, 1-21, 2021 · Zbl 1466.49015
[25] Shehu, Y.; Iyiola, OS; Thong, DV; Van, NTC, An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems, Math. Methods Oper. Res., 93, 213-242, 2021 · Zbl 1471.90152
[26] Shehu, Y., Single projection algorithm for variational inequalities in Banach spaces with application to contact problem, Acta Math. Sci. Ser. B, 40, 1045-1063, 2020 · Zbl 1493.47099
[27] Gibali, A.; Liu, LW; Tang, YC, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., 12, 817-830, 2018 · Zbl 1423.90179
[28] Gibali, A.; Küfer, KH; Reem, D.; Süss, P., A generalized projection-based scheme for solving convex constrained optimization problems, Comput. Optim. Appl., 70, 737-762, 2018 · Zbl 1393.90084
[29] Gibali, A.; Thong, DV; Tuan, PA, Two simple projection-type methods for solving variational inequalities, Anal. Math. Phys., 9, 2203-2225, 2019 · Zbl 07152002
[30] Gibali, A.; Thong, DV, A new low-cost double projection method for solving variational inequalities, Optim. Eng., 21, 1613-1634, 2020 · Zbl 1456.65190
[31] Tang, Y.; Gibali, A., New self-adaptive step size algorithms for solving split variational inclusion problems and its applications, Numer. Algorithms, 83, 305-331, 2020 · Zbl 1486.65067
[32] Jolaoso, LO; Shehu, Y., Single Bregman projection method for solving variational inequalities in reflexive Banach spaces, Appl. Anal., 101, 4807-4828, 2022 · Zbl 1518.65056
[33] Bauschke, HH; Borwein, JM; Combettes, PL, Essential smoothness, essential strict convexity and Legendre functions in Banach space, Comm. Contemp. Math., 3, 615-647, 2001 · Zbl 1032.49025
[34] Reem, D.; Reich, S., Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization, Rendiconti del Circolo Matematico di Palermo, 67, 337-371, 2018 · Zbl 1401.90233
[35] Reem, D.; Reich, S.; De Pierro, A., Re-examination of Bregman functions and new properties of their divergences, Optimization, 68, 279-348, 2019 · Zbl 1407.52008
[36] Butnariu, D.; Reich, S.; Zaslavski, AJ, There are many totally convex functions, J. Convex Anal., 13, 623-632, 2006 · Zbl 1119.46055
[37] Reich, S.; Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10, 471-485, 2009 · Zbl 1180.47046
[38] Butnariu, D.; Iusem, AN, Totally convex functions for fixed points computation and infinite dimensional optimization, 2000, Newyork: Springer, Newyork · Zbl 0960.90092
[39] Censor, Y.; Lent, A., An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34, 321-353, 1981 · Zbl 0431.49042
[40] Maingé, PE, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-valued Anal., 16, 899-912, 2008 · Zbl 1156.90426
[41] Xu, HK, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66, 240-256, 2002 · Zbl 1013.47032
[42] Thong, DV; Van Hieu, D., Strong convergence of extragradient methods with a new step size for solving variational inequality problems, Comput. Appl. Math., 38, 136, 2019 · Zbl 1438.65139
[43] Thong, DV; Gibali, A., Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities, J. Fixed Point Theory Appl., 21, 1-19, 2019 · Zbl 07008531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.