×

Two simple projection-type methods for solving variational inequalities. (English) Zbl 07152002

Summary: In this paper we study a classical monotone and Lipschitz continuous variational inequality in real Hilbert spaces. Two projection type methods, Mann and its viscosity generalization are introduced with their strong convergence theorems. Our methods generalize and extend some related results in the literature and their main advantages are: the strong convergence and the adaptive step-size usage which avoids the need to know apriori the Lipschitz constant of variational inequality associated operator. Primary numerical experiments in finite and infinite dimensional spaces compare and illustrate the behaviors of the proposed schemes.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J20 Variational and other types of inequalities involving nonlinear operators (general)
65K15 Numerical methods for variational inequalities and related problems
90C25 Convex programming
Full Text: DOI

References:

[1] Antipin, As, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody., 12, 1164-1173 (1976) · Zbl 0368.90115
[2] Aubin, Jp; Ekeland, I., Applied Nonlinear Analysis (1984), New York: Wiley, New York · Zbl 0641.47066
[3] Baiocchi, C.; Capelo, A., Variational and Quasivariational Inequalities, Applications to Free Boundary Problems (1984), New York: Wiley, New York · Zbl 0551.49007
[4] Cai, X.; Gu, G.; He, B., On the \(O(1/t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators, Comput. Optim. Appl., 57, 339-363 (2014) · Zbl 1304.90203 · doi:10.1007/s10589-013-9599-7
[5] Cegielski, A., Iterative Methods for Fixed Point Problems in Hilbert Spaces (2012), Berlin: Springer, Berlin · Zbl 1256.47043
[6] Ceng, Lc; Hadjisavvas, N.; Wong, Nc, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46, 635-646 (2010) · Zbl 1198.47081 · doi:10.1007/s10898-009-9454-7
[7] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradientmethod for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[8] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Meth. Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[9] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119-1132 (2011) · Zbl 1260.65056 · doi:10.1080/02331934.2010.539689
[10] Censor, Y.; Gibali, A.; Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithms, 56, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[11] Dong, Ql; Gibali, A.; Jiang, D.; Ke, Sh, Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery, J. Fixed Point Theory Appl., 20, 16 (2018) · Zbl 1388.49007 · doi:10.1007/s11784-018-0501-1
[12] Dong, Lq; Cho, Jy; Zhong, Ll; Rassias, Mth, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70, 687-704 (2018) · Zbl 1390.90568 · doi:10.1007/s10898-017-0506-0
[13] Facchinei, F.; Pang, Js, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II (2003), New York: Springer, New York · Zbl 1062.90001
[14] Fichera, G., Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, VIII Ser. Rend. Cl. Sci. Fis. Mat. Nat., 34, 138-142 (1963) · Zbl 0128.18305
[15] Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat. Sez. I, VIII. Ser., 7, 91-140 (1964) · Zbl 0146.21204
[16] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), New York: Marcel Dekker, New York · Zbl 0537.46001
[17] He, Bs, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35, 69-76 (1997) · Zbl 0865.90119 · doi:10.1007/s002459900037
[18] He, Bs; Liao, Lz, Improvements of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl., 112, 111-128 (2002) · Zbl 1025.65036 · doi:10.1023/A:1013096613105
[19] Hieu, Dv; Anh, Pk; Muu, Ld, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 66, 75-96 (2017) · Zbl 1368.65103 · doi:10.1007/s10589-016-9857-6
[20] Konnov, Iv, Combined Relaxation Methods for Variational Inequalities (2001), Berlin: Springer, Berlin · Zbl 0982.49009
[21] Korpelevich, Gm, The extragradient method for finding saddle points and other problems, Ekonomika i Mat. Metody., 12, 747-756 (1976) · Zbl 0342.90044
[22] Kraikaew, R.; Saejung, S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163, 399-412 (2014) · Zbl 1305.49012 · doi:10.1007/s10957-013-0494-2
[23] Liu, Ls, Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach space, J. Math. Anal. Appl., 194, 114-125 (1995) · Zbl 0872.47031 · doi:10.1006/jmaa.1995.1289
[24] Maingé, Pe, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47, 1499-1515 (2008) · Zbl 1178.90273 · doi:10.1137/060675319
[25] Malitsky, Yv, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25, 502-520 (2015) · Zbl 1314.47099 · doi:10.1137/14097238X
[26] Malitsky, Yv; Semenov, Vv, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61, 193-202 (2015) · Zbl 1366.47018 · doi:10.1007/s10898-014-0150-x
[27] Mann, Wr, Mean value methods in iteration, Proc. Am. Math. Soc., 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3
[28] Moudafi, A., Viscosity approximating methods for fixed point problems, J. Math. Anal. Appl., 241, 46-55 (2000) · Zbl 0957.47039 · doi:10.1006/jmaa.1999.6615
[29] Reich, S., Constructive Techniques for Accretive and Monotone Operators, 335-345 (1979), New York: Academic Press, New York · Zbl 0444.47042
[30] Shehu, Y.; Iyiola, Os, Strong convergence result for monotone variational inequalities, Numer. Algorithms, 76, 259-282 (2017) · Zbl 06788836 · doi:10.1007/s11075-016-0253-1
[31] Solodov, Mv; Svaiter, Bf, A new projection method for variational inequality problems, SIAM J. Control Optim., 37, 765-776 (1999) · Zbl 0959.49007 · doi:10.1137/S0363012997317475
[32] Sun, Df, A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory Appl., 91, 123-140 (1996) · Zbl 0871.90091 · doi:10.1007/BF02192286
[33] Thong, Dv; Hieu, Dv, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78, 1045-1060 (2018) · Zbl 1398.65376 · doi:10.1007/s11075-017-0412-z
[34] Thong, Dv; Hieu, Dv, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79, 597-610 (2018) · Zbl 06945630 · doi:10.1007/s11075-017-0452-4
[35] Thong, Dv; Hieu, Dv, Inertial extragradient algorithms for strongly pseudomonotone variational inequalities, J. Comput. Appl. Math., 341, 80-98 (2018) · Zbl 1524.65240 · doi:10.1016/j.cam.2018.03.019
[36] Xu, Hk, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.