×

Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. (English) Zbl 1493.47100

Summary: In this paper, we present a proximal split feasibility algorithm with an additional inertial extrapolation term for solving a proximal split feasibility problem under weaker conditions on the step sizes. The two convex and lower semi continuous objective functions are assumed to be non-smooth. Some applications to split inclusion problem and split equilibrium problem are given. We demonstrate the efficiency of the proposed algorithm with numerical experiments.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

Software:

iPiasco
Full Text: DOI

References:

[1] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3-11 (2001) · Zbl 0991.65056 · doi:10.1023/A:1011253113155
[2] Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2(1), 1-34 (2000) · Zbl 0983.37016 · doi:10.1142/S0219199700000025
[3] Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179(1), 278-310 (2002) · Zbl 1007.34049 · doi:10.1006/jdeq.2001.4034
[4] Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232-256 (2014) · Zbl 1295.90044 · doi:10.1137/130910294
[5] Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12(1-3), 31-40 (1999) · Zbl 1039.90529
[6] Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1-9 (1978) · Zbl 0396.47033
[7] Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715-738 (2004) · Zbl 1059.47060 · doi:10.1016/j.na.2003.10.010
[8] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[9] Bello Cruz, J.Y., Shehu, Y.: An iterative method for split inclusion problems without prior knowledge of operator norms. J. Fixed Point Theory Appl. doi:10.1007/s11784-016-0387-8 (in press) · Zbl 1380.49004
[10] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123-145 (1994) · Zbl 0888.49007
[11] Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472-487 (2015) · Zbl 1338.65145 · doi:10.1016/j.amc.2015.01.017
[12] Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29-49 (2016) · Zbl 1337.90082
[13] Bot, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Alg. 71, 519-540 (2016) · Zbl 1338.47076 · doi:10.1007/s11075-015-0007-5
[14] \[Br \acute{e}\] e´zis, H., Lions, P.L.: Produits infinis de resolvantes. Isr. J. Math. 29, 329-345 (1978) · Zbl 0387.47038
[15] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[16] Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[17] Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759-775 (2012) · Zbl 1262.47073
[18] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[19] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2-4), 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[20] Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7, 421-444 (1997) · Zbl 0876.49009 · doi:10.1137/S1052623495290179
[21] Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239-2267 (2015) · Zbl 1328.65134 · doi:10.1137/15100463X
[22] Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727-748 (2009) · Zbl 1193.47067
[23] Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005) · Zbl 1109.90079
[24] Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168-1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[25] Dang, Y., Gao, Y., Han, Y.: A perturbed projection algorithm with inertial technique for split feasibility problem. J. Appl. Math. Article ID 207323, 10 (2012) · Zbl 1256.65052
[26] Dunn, J.C.: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 53, 145-158 (1976) · Zbl 0321.49025 · doi:10.1016/0022-247X(76)90152-9
[27] Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, New York (1984) · Zbl 0537.46001
[28] Gibali, A., Moudafi, A.: From implicit convex feasibility to convex minimization. Trans. Math. Program. Appl. 5, 60-80 (2017)
[29] G \[\ddot{u}\] u¨ler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control. Optim. 29, 403-419 (1991) · Zbl 1175.94009
[30] Hendrickx, J.M., Olshevsky, A.: Matrix \[PP\]-norms are NP-hard to approximate if \[P\ne 1,2,\infty P\]≠1,2,∞. SIAM. J. Matrix Anal. Appl. 31, 2802-2812 (2010) · Zbl 1216.68117 · doi:10.1137/09076773X
[31] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979) · Zbl 0426.65050 · doi:10.1137/0716071
[32] Lopez, G., Martin-Marquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012) · Zbl 1262.90193 · doi:10.1088/0266-5611/28/8/085004
[33] Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311-325 (2015) · Zbl 1327.47063 · doi:10.1007/s10851-014-0523-2
[34] Mainge, P.-E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223-236 (2008) · Zbl 1156.65054
[35] Mainge, P.-E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344, 876-887 (2008) · Zbl 1146.47042 · doi:10.1016/j.jmaa.2008.03.028
[36] Martinet, B.: Regularisation dinequations variationnelles par approximations successives. Rev. Francaise Informat. Recherche. Operationnelle 4, 154-158 (1970) · Zbl 0215.21103
[37] Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011) · Zbl 1231.90358 · doi:10.1007/s10957-011-9814-6
[38] Moudafi, A., Thera, M.: Proximal and dynamical approaches to equilibrium problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187-201. Springer (1999) · Zbl 0944.65080
[39] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8(7), 2099-2110 (2014) · Zbl 1317.49019 · doi:10.1007/s11590-013-0708-4
[40] Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vision 53, 171-181 (2015) · Zbl 1327.90219 · doi:10.1007/s10851-015-0565-0
[41] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[42] Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383-390 (1979) · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[43] Podilchuk, C.I., Mammone, R.J.: Image recovery by convex projections using a least-squares constraint. J. Opt. Soc. Am. A 7, 517-521 (1990) · doi:10.1364/JOSAA.7.000517
[44] Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1-17 (1964) · Zbl 0147.35301
[45] Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21(5), 1655-1665 (2005) · Zbl 1080.65033 · doi:10.1088/0266-5611/21/5/009
[46] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[47] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[48] Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1988) · Zbl 0888.49001
[49] Shehu, Y., Cai, G., Iyiola, O.S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015, 123 (2015) · Zbl 1336.49023 · doi:10.1186/s13663-015-0375-5
[50] Shehu, Y., Ogbuisi, F.U.: An iterative method for solving split monotone variational inclusion and fixed point problems. RACSAM 110, 503-518 (2016) · Zbl 1382.47031 · doi:10.1007/s13398-015-0245-3
[51] Shehu, Y., Ogbuisi, F.U.: Convergence analysis for proximal split feasibility problems and fixed point problems. J. Appl. Math. Comp. 48, 221-239 (2015) · Zbl 1318.49019 · doi:10.1007/s12190-014-0800-7
[52] Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halperns type in Hilbert spaces and applications. Taiwan. J. Math. 16, 1151-1172 (2012) · Zbl 1515.47106 · doi:10.11650/twjm/1500406684
[53] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431-446 (2000) · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[54] Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Global Optim. 54, 485-491 (2012) · Zbl 1298.47078 · doi:10.1007/s10898-011-9772-4
[55] Xu, H.-K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021-2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[56] Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20(4), 1261-1266 (2004) · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[57] Yang, Q., Zhao, J.: Generalized KM theorems and their applications. Inverse Probl. 22(3), 833-844 (2006) · Zbl 1117.65081 · doi:10.1088/0266-5611/22/3/006
[58] Yao, Y., Jigang, W., Liou, Y.-C.: Regularized methods for the split feasibility problem. Abstr. Appl. Anal. Article ID 140679, 13 (2012) · Zbl 1235.94028
[59] Yao, Z., Cho, S.Y., Kang, S.M., Zhu, L.-J.: A regularized algorithm for the proximal split feasibility problem. Abstr. Appl. Anal. Article ID 894272, 6 (2014) · Zbl 1473.47047
[60] Yao, Y., Yao, Z., Abdou, A.A., Cho, Y.J.: Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis. Fixed Point Theory Appl. 2015, 205 (2015) · Zbl 1346.49052 · doi:10.1186/s13663-015-0462-7
[61] Youla, D.: On deterministic convergence of iterations of related projection mappings. J. Vis. Commun. Image Represent 1, 12-20 (1990) · doi:10.1016/1047-3203(90)90013-L
[62] Zegeye, H., Shahzad, N.: Strong convergence theorems for a common zero of a finite family of maccretive mappings. Nonlinear Anal. 66, 1161-1169 (2007) · Zbl 1120.47061 · doi:10.1016/j.na.2006.01.012
[63] Zegeye, H., Shahzad, N.: Solutions of variational inequality problems in the set of fixed points of pseudocontractive mappings. Carpathian J. Math. 30, 257-265 (2014) · Zbl 1324.47127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.