×

Non-Gaussianity in rapid-turn multi-field inflation. (English) Zbl 1543.83209

Summary: We show that theories of inflation with multiple, rapidly turning fields can generate large amounts of non-Gaussianity. We consider a general theory with two fields, an arbitrary field-space metric, and a potential that supports sustained, rapidly turning field trajectories. Our analysis accounts for non-zero field cross-correlation and does not fix the power spectra of curvature and isocurvature perturbations to be equal at horizon crossings. Using the \( \delta N\) formalism, we derive a novel, analytical formula for the bispectrum generated from multi-field mixing on super-horizon scales. Rapid-turn inflation can produce a bispectrum with several potentially large contributions that are not necessarily of the local shape. We exemplify the applicability of our formula with a fully explicit model and show that the new contributions indeed can generate a large amplitude of local non-Gaussianity, \(f_{NL}^{loc} \sim \mathcal{O} (1)\). These results will be important when interpreting the outcomes of future observations.
{© 2024 The Author(s)}

MSC:

83F05 Relativistic cosmology

References:

[1] Meerburg, P. Daniel, Primordial Non-Gaussianity, Bull. Am. Astron. Soc., 51, 107, 2019
[2] Achúcarro, Ana, Inflation: Theory and Observations, 2022
[3] Maldacena, Juan Martin, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013, 2003 · doi:10.1088/1126-6708/2003/05/013
[4] Creminelli, Paolo; Zaldarriaga, Matias, Single field consistency relation for the 3-point function, JCAP, 10, 2004 · doi:10.1088/1475-7516/2004/10/006
[5] Sasaki, Misao; Stewart, Ewan D., A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys., 95, 71-78, 1996 · doi:10.1143/PTP.95.71
[6] Wands, David; Malik, Karim A.; Lyth, David H.; Liddle, Andrew R., A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D, 62, 2000 · doi:10.1103/PhysRevD.62.043527
[7] Lyth, David H.; Rodriguez, Yeinzon, The Inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett., 95, 2005 · doi:10.1103/PhysRevLett.95.121302
[8] Weinberg, Steven, Quantum contributions to cosmological correlations, Phys. Rev. D, 72, 2005 · doi:10.1103/PhysRevD.72.043514
[9] Wang, Dong-Gang; Pimentel, Guilherme L.; Achúcarro, Ana, Bootstrapping multi-field inflation: non-Gaussianities from light scalars revisited, JCAP, 05, 2023 · Zbl 1528.83171 · doi:10.1088/1475-7516/2023/05/043
[10] Werth, Denis; Pinol, Lucas; Renaux-Petel, Sébastien, Cosmological Flow of Primordial Correlators, 2023
[11] Lyth, David H.; Wands, David, Generating the curvature perturbation without an inflaton, Phys. Lett. B, 524, 5-14, 2002 · Zbl 0981.83063 · doi:10.1016/S0370-2693(01)01366-1
[12] Lyth, David H.; Ungarelli, Carlo; Wands, David, The Primordial density perturbation in the curvaton scenario, Phys. Rev. D, 67, 2003 · doi:10.1103/PhysRevD.67.023503
[13] Bartolo, N.; Matarrese, S.; Riotto, A., On non-Gaussianity in the curvaton scenario, Phys. Rev. D, 69, 2004 · doi:10.1103/PhysRevD.69.043503
[14] Sasaki, Misao; Valiviita, Jussi; Wands, David, Non-Gaussianity of the primordial perturbation in the curvaton model, Phys. Rev. D, 74, 2006 · doi:10.1103/PhysRevD.74.103003
[15] Lyth, David H., Generating the curvature perturbation at the end of inflation, JCAP, 11, 2005 · Zbl 1236.83042 · doi:10.1088/1475-7516/2005/11/006
[16] Alabidi, Laila; Lyth, David, Curvature perturbation from symmetry breaking the end of inflation, JCAP, 08, 2006 · doi:10.1088/1475-7516/2006/08/006
[17] Byrnes, Christian T.; Choi, Ki-Young; Hall, Lisa M. H., Large non-Gaussianity from two-component hybrid inflation, JCAP, 02, 2009 · doi:10.1088/1475-7516/2009/02/017
[18] Sasaki, Misao, Multi-brid inflation and non-Gaussianity, Prog. Theor. Phys., 120, 159-174, 2008 · Zbl 1158.83330 · doi:10.1143/PTP.120.159
[19] Naruko, Atsushi; Sasaki, Misao, Large non-Gaussianity from multi-brid inflation, Prog. Theor. Phys., 121, 193-210, 2009 · Zbl 1178.83074 · doi:10.1143/PTP.121.193
[20] Dvali, Gia; Gruzinov, Andrei; Zaldarriaga, Matias, Cosmological perturbations from inhomogeneous reheating, freezeout, and mass domination, Phys. Rev. D, 69, 2004 · doi:10.1103/PhysRevD.69.083505
[21] Enqvist, Kari; Jokinen, Asko; Mazumdar, Anupam; Multamaki, Tuomas; Vaihkonen, Antti, Non-Gaussianity from preheating, Phys. Rev. Lett., 94, 2005 · doi:10.1103/PhysRevLett.94.161301
[22] Jokinen, Asko; Mazumdar, Anupam, Very large primordial non-Gaussianity from multi-field: application to massless preheating, JCAP, 04, 2006 · doi:10.1088/1475-7516/2006/04/003
[23] Suyama, Teruaki; Yamaguchi, Masahide, Non-Gaussianity in the modulated reheating scenario, Phys. Rev. D, 77, 2008 · doi:10.1103/PhysRevD.77.023505
[24] Ichikawa, Kazuhide; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide, Primordial Curvature Fluctuation and Its Non-Gaussianity in Models with Modulated Reheating, Phys. Rev. D, 78, 2008 · doi:10.1103/PhysRevD.78.063545
[25] Meyers, Joel; Tarrant, Ewan R. M., Perturbative Reheating After Multiple-Field Inflation: The Impact on Primordial Observables, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.063535
[26] Elliston, Joseph; Orani, Stefano; Mulryne, David J., General analytic predictions of two-field inflation and perturbative reheating, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.103532
[27] Seery, David; Lidsey, James E., Primordial non-Gaussianities from multiple-field inflation, JCAP, 09, 2005 · doi:10.1088/1475-7516/2005/09/011
[28] Rigopoulos, G. I.; Shellard, E. P. S.; van Tent, B. J. W., Large non-Gaussianity in multiple-field inflation, Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.083522
[29] Bassett, Bruce A.; Tsujikawa, Shinji; Wands, David, Inflation dynamics and reheating, Rev. Mod. Phys., 78, 537-589, 2006 · doi:10.1103/RevModPhys.78.537
[30] Rigopoulos, G. I.; Shellard, E. P. S.; van Tent, B. J. W., Quantitative bispectra from multifield inflation, Phys. Rev. D, 76, 2007 · doi:10.1103/PhysRevD.76.083512
[31] Kim, Soo A.; Liddle, Andrew R., Nflation: Non-Gaussianity in the horizon-crossing approximation, Phys. Rev. D, 74, 2006 · doi:10.1103/PhysRevD.74.063522
[32] Battefeld, Thorsten; Easther, Richard, Non-Gaussianities in Multi-field Inflation, JCAP, 03, 2007 · doi:10.1088/1475-7516/2007/03/020
[33] Seery, David; Lidsey, James E., Non-Gaussianity from the inflationary trispectrum, JCAP, 01, 2007 · doi:10.1088/1475-7516/2007/01/008
[34] Byrnes, Christian T.; Sasaki, Misao; Wands, David, The primordial trispectrum from inflation, Phys. Rev. D, 74, 2006 · doi:10.1103/PhysRevD.74.123519
[35] Yokoyama, Shuichiro; Suyama, Teruaki; Tanaka, Takahiro, Primordial Non-Gaussianity in Multi-Scalar Inflation, Phys. Rev. D, 77, 2008 · doi:10.1103/PhysRevD.77.083511
[36] Byrnes, Christian T.; Choi, Ki-Young; Hall, Lisa M. H., Conditions for large non-Gaussianity in two-field slow-roll inflation, JCAP, 10, 2008 · doi:10.1088/1475-7516/2008/10/008
[37] Byrnes, Christian T.; Tasinato, Gianmassimo, Non-Gaussianity beyond slow roll in multi-field inflation, JCAP, 08, 2009 · doi:10.1088/1475-7516/2009/08/016
[38] Byrnes, Christian T.; Choi, Ki-Young, Review of local non-Gaussianity from multi-field inflation, Adv. Astron., 2010, 2010 · doi:10.1155/2010/724525
[39] Wands, David, Local non-Gaussianity from inflation, Class. Quant. Grav., 27, 2010 · Zbl 1190.83132 · doi:10.1088/0264-9381/27/12/124002
[40] Renaux-Petel, Sebastien, Combined local and equilateral non-Gaussianities from multifield DBI inflation, JCAP, 10, 2009 · doi:10.1088/1475-7516/2009/10/012
[41] Dias, Mafalda; Frazer, Jonathan; Liddle, Andrew R., Multifield consequences for D-brane inflation, JCAP, 06, 2012 · doi:10.1088/1475-7516/2012/06/020
[42] McAllister, Liam; Renaux-Petel, Sebastien; Xu, Gang, A Statistical Approach to Multifield Inflation: Many-field Perturbations Beyond Slow Roll, JCAP, 10, 2012 · doi:10.1088/1475-7516/2012/10/046
[43] Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam, Planck-Suppressed Operators, JCAP, 01, 2014 · doi:10.1088/1475-7516/2014/01/033
[44] Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A., A No-Scale Inflationary Model to Fit Them All, JCAP, 08, 2014 · doi:10.1088/1475-7516/2014/08/044
[45] Kawai, Shinsuke; Kim, Jinsu, Testing supersymmetric Higgs inflation with non-Gaussianity, Phys. Rev. D, 91, 2015 · doi:10.1103/PhysRevD.91.045021
[46] Kawai, Shinsuke; Kim, Jinsu, Multifield dynamics of supersymmetric Higgs inflation in SU(5) GUT, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.065023
[47] Marzouk, Kareem; Maraio, Alessandro; Seery, David, Non-Gaussianity in D3-brane inflation, JCAP, 02, 2022 · Zbl 1492.83128 · doi:10.1088/1475-7516/2022/02/013
[48] Frazer, Jonathan; Liddle, Andrew R., Multi-field inflation with random potentials: field dimension, feature scale and non-Gaussianity, JCAP, 02, 2012 · doi:10.1088/1475-7516/2012/02/039
[49] Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David, Seven Lessons from Manyfield Inflation in Random Potentials, JCAP, 01, 2018 · Zbl 1527.83119 · doi:10.1088/1475-7516/2018/01/036
[50] Bjorkmo, Theodor; Marsh, M. C. David, Manyfield Inflation in Random Potentials, JCAP, 02, 2018 · Zbl 1527.83109 · doi:10.1088/1475-7516/2018/02/037
[51] Peterson, Courtney M.; Tegmark, Max, Testing Two-Field Inflation, Phys. Rev. D, 83, 2011 · doi:10.1103/PhysRevD.83.023522
[52] Peterson, Courtney M.; Tegmark, Max, Non-Gaussianity in Two-Field Inflation, Phys. Rev. D, 84, 2011 · doi:10.1103/PhysRevD.84.023520
[53] Peterson, Courtney M.; Tegmark, Max, Testing multifield inflation: A geometric approach, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.103507
[54] Amendola, Luca; Gordon, Christopher; Wands, David; Sasaki, Misao, Correlated perturbations from inflation and the cosmic microwave background, Phys. Rev. Lett., 88, 2002 · doi:10.1103/PhysRevLett.88.211302
[55] Wands, David; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio, An Observational test of two-field inflation, Phys. Rev. D, 66, 2002 · doi:10.1103/PhysRevD.66.043520
[56] Lehners, Jean-Luc; Renaux-Petel, Sebastien, Multifield Cosmological Perturbations at Third Order and the Ekpyrotic Trispectrum, Phys. Rev. D, 80, 2009 · doi:10.1103/PhysRevD.80.063503
[57] Renaux-Petel, Sébastien; Turzyński, Krzysztof, Geometrical Destabilization of Inflation, Phys. Rev. Lett., 117, 2016 · doi:10.1103/PhysRevLett.117.141301
[58] Christodoulidis, Perseas; Roest, Diederik; Sfakianakis, Evangelos I., Angular inflation in multi-field α-attractors, JCAP, 11, 2019 · Zbl 1543.83190 · doi:10.1088/1475-7516/2019/11/002
[59] Garcia-Saenz, Sebastian; Renaux-Petel, Sébastien; Ronayne, John, Primordial fluctuations and non-Gaussianities in sidetracked inflation, JCAP, 07, 2018 · Zbl 1527.83134 · doi:10.1088/1475-7516/2018/07/057
[60] Grocholski, Oskar; Kalinowski, Marcin; Kolanowski, Maciej; Renaux-Petel, Sébastien; Turzyński, Krzysztof; Vennin, Vincent, On backreaction effects in geometrical destabilisation of inflation, JCAP, 05, 2019 · Zbl 1481.83108 · doi:10.1088/1475-7516/2019/05/008
[61] Brown, Adam R., Hyperbolic Inflation, Phys. Rev. Lett., 121, 2018 · doi:10.1103/PhysRevLett.121.251601
[62] Mizuno, Shuntaro; Mukohyama, Shinji, Primordial perturbations from inflation with a hyperbolic field-space, Phys. Rev. D, 96, 2017 · doi:10.1103/PhysRevD.96.103533
[63] Bjorkmo, Theodor; Marsh, M. C. David, Hyperinflation generalised: from its attractor mechanism to its tension with the “Swampland conditions”, JHEP, 04, 172, 2019 · doi:10.1007/JHEP04(2019)172
[64] Bjorkmo, Theodor, Rapid-Turn Inflationary Attractors, Phys. Rev. Lett., 122, 2019 · doi:10.1103/PhysRevLett.122.251301
[65] Renaux-Petel, Sébastien, Inflation with strongly non-geodesic motion: theoretical motivations and observational imprints, PoS, EPS-HEP2021, 128, 2022 · doi:10.22323/1.398.0128
[66] Achúcarro, Ana; Palma, Gonzalo A., The string Swampland constraints require multi-field inflation, JCAP, 02, 2019 · Zbl 1541.83084 · doi:10.1088/1475-7516/2019/02/041
[67] Achúcarro, Ana; Copeland, Edmund J.; Iarygina, Oksana; Palma, Gonzalo A.; Wang, Dong-Gang; Welling, Yvette, Shift-symmetric orbital inflation: Single field or multifield?, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.021302
[68] Achúcarro, Ana; Welling, Yvette, Orbital Inflation: inflating along an angular isometry of field space, 2019
[69] Chakraborty, Dibya; Chiovoloni, Roberta; Loaiza-Brito, Oscar; Niz, Gustavo; Zavala, Ivonne, Fat inflatons, large turns and the η-problem, JCAP, 01, 2020 · Zbl 1489.83076 · doi:10.1088/1475-7516/2020/01/020
[70] Aragam, Vikas; Paban, Sonia; Rosati, Robert, The Multi-Field, Rapid-Turn Inflationary Solution, JHEP, 03, 009, 2021 · Zbl 1461.83099 · doi:10.1007/JHEP03(2021)009
[71] Aragam, Vikas; Chiovoloni, Roberta; Paban, Sonia; Rosati, Robert; Zavala, Ivonne, Rapid-turn inflation in supergravity is rare and tachyonic, JCAP, 03, 2022 · Zbl 1504.83034 · doi:10.1088/1475-7516/2022/03/002
[72] Bhattacharya, Sukannya; Zavala, Ivonne, Sharp turns in axion monodromy: primordial black holes and gravitational waves, JCAP, 04, 2023 · Zbl 1523.83053 · doi:10.1088/1475-7516/2023/04/065
[73] Anguelova, Lilia; Lazaroiu, Calin Iuliu, Dynamical consistency conditions for rapid turn inflation, JCAP, 05, 2023 · Zbl 1523.83052 · doi:10.1088/1475-7516/2023/05/020
[74] Garcia-Saenz, Sebastian; Renaux-Petel, Sébastien, Flattened non-Gaussianities from the effective field theory of inflation with imaginary speed of sound, JCAP, 11, 2018 · Zbl 1527.85009 · doi:10.1088/1475-7516/2018/11/005
[75] Fumagalli, Jacopo; Garcia-Saenz, Sebastian; Pinol, Lucas; Renaux-Petel, Sébastien; Ronayne, John, Hyper-Non-Gaussianities in Inflation with Strongly Nongeodesic Motion, Phys. Rev. Lett., 123, 2019 · doi:10.1103/PhysRevLett.123.201302
[76] Bjorkmo, Theodor; Ferreira, Ricardo Z.; Marsh, M. C. David, Mild Non-Gaussianities under Perturbative Control from Rapid-Turn Inflation Models, JCAP, 12, 2019 · Zbl 1543.83178 · doi:10.1088/1475-7516/2019/12/036
[77] Ferreira, Ricardo Z., Non-Gaussianities in models of inflation with large and negative entropic masses, JCAP, 08, 2020 · Zbl 1492.83092 · doi:10.1088/1475-7516/2020/08/034
[78] Garcia-Saenz, Sebastian; Pinol, Lucas; Renaux-Petel, Sébastien, Revisiting non-Gaussianity in multifield inflation with curved field space, JHEP, 01, 073, 2020 · Zbl 1434.85014 · doi:10.1007/JHEP01(2020)073
[79] Groot Nibbelink, S.; van Tent, B. J. W., Density perturbations arising from multiple field slow roll inflation, 2000
[80] Groot Nibbelink, S.; van Tent, B. J. W., Scalar perturbations during multiple field slow-roll inflation, Class. Quant. Grav., 19, 613-640, 2002 · Zbl 1005.83053 · doi:10.1088/0264-9381/19/4/302
[81] Achucarro, Ana; Gong, Jinn-Ouk; Hardeman, Sjoerd; Palma, Gonzalo A.; Patil, Subodh P., Features of heavy physics in the CMB power spectrum, JCAP, 01, 2011 · doi:10.1088/1475-7516/2011/01/030
[82] Lyth, David H.; Malik, Karim A.; Sasaki, Misao, A General proof of the conservation of the curvature perturbation, JCAP, 05, 2005 · Zbl 1236.83043 · doi:10.1088/1475-7516/2005/05/004
[83] Lyth, David H.; Rodriguez, Yeinzon, Non-Gaussianity from the second-order cosmological perturbation, Phys. Rev. D, 71, 2005 · doi:10.1103/PhysRevD.71.123508
[84] Salopek, D. S.; Bond, J. R., Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D, 42, 3936-3962, 1990 · doi:10.1103/PhysRevD.42.3936
[85] Malik, Karim A.; Wands, David, Cosmological perturbations, Phys. Rep., 475, 1-51, 2009 · doi:10.1016/j.physrep.2009.03.001
[86] Kaiser, David I.; Mazenc, Edward A.; Sfakianakis, Evangelos I., Primordial Bispectrum from Multifield Inflation with Nonminimal Couplings, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.064004
[87] Babich, Daniel; Creminelli, Paolo; Zaldarriaga, Matias, The Shape of non-Gaussianities, JCAP, 08, 2004 · doi:10.1088/1475-7516/2004/08/009
[88] Byrnes, Christian T.; Nurmi, Sami; Tasinato, Gianmassimo; Wands, David, Scale dependence of local f_NL, JCAP, 02, 2010 · doi:10.1088/1475-7516/2010/02/034
[89] Dias, Mafalda; Ribeiro, Raquel H.; Seery, David, Scale-dependent bias from multiple-field inflation, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.107301
[90] Kenton, Zachary; Mulryne, David J., The squeezed limit of the bispectrum in multi-field inflation, JCAP, 10, 2015 · doi:10.1088/1475-7516/2015/10/018
[91] Bartolo, N.; Matarrese, S.; Riotto, A., Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations, Phys. Rev. D, 64, 2001 · doi:10.1103/PhysRevD.64.123504
[92] Mulryne, David J.; Ronayne, John W., PyTransport: A Python package for the calculation of inflationary correlation functions, J. Open Source Softw., 3, 494, 2018 · doi:10.21105/joss.00494
[93] Creminelli, Paolo; Nicolis, Alberto; Senatore, Leonardo; Tegmark, Max; Zaldarriaga, Matias, Limits on non-Gaussianities from wmap data, JCAP, 05, 2006 · doi:10.1088/1475-7516/2006/05/004
[94] Meerburg, Pieter Daniel; van der Schaar, Jan Pieter; Corasaniti, Pier Stefano, Signatures of Initial State Modifications on Bispectrum Statistics, JCAP, 05, 2009 · doi:10.1088/1475-7516/2009/05/018
[95] Renaux-Petel, Sebastien; Mizuno, Shuntaro; Koyama, Kazuya, Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation, JCAP, 11, 2011 · doi:10.1088/1475-7516/2011/11/042
[96] Gong, Jinn-Ouk; Tanaka, Takahiro, A covariant approach to general field space metric in multi-field inflation, JCAP, 03, 2011 · doi:10.1088/1475-7516/2012/02/E01
[97] Elliston, Joseph; Seery, David; Tavakol, Reza, The inflationary bispectrum with curved field-space, JCAP, 11, 2012 · doi:10.1088/1475-7516/2012/11/060
[98] Mukhanov, Viatcheslav F.; Feldman, H. A.; Brandenberger, Robert H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rep., 215, 203-333, 1992 · doi:10.1016/0370-1573(92)90044-Z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.