×

Flattened non-Gaussianities from the effective field theory of inflation with imaginary speed of sound. (English) Zbl 1527.85009

Summary: Inflationary perturbations in multi-field theories can exhibit a transient tachyonic instability as a consequence of their non-trivial motion in the internal field space. When an effective single-field description is applicable, the resulting theory is characterized by fluctuations that propagate with an imaginary speed of sound. We use the effective field theory of fluctuations to study such a set-up in a model-independent manner, highlighting the peculiarities and subtleties that make it different from the standard case. In particular, perturbations feature exponentially growing and decaying modes whose relative amplitude is undetermined within the effective field theory. Nevertheless, we prove that in an interesting limit the dimensionless bispectrum is in fact universal, depending only on the speed of sound and on the cutoff scale that limits the validity of the effective theory. Contrary to the power spectrum, we find that the bispectrum does not display an exponential enhancement. The amplitude of non-Gaussianities in the equilateral configuration is similar to the one of conventional models, but it is enhanced in flattened configurations in a way that is ultraviolet sensitive.

MSC:

85A40 Astrophysical cosmology

References:

[1] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XX. Constraints on inflation, https://doi.org/10.1051/0004-6361/201525898 Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[2] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, https://doi.org/10.1051/0004-6361/201525836 Astron. Astrophys.594 A17 [1502.01592] · doi:10.1051/0004-6361/201525836
[3] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2015, [1404.2601] · Zbl 1339.83003 · doi:10.1017/CBO978131610573310.1017
[4] M. Yamaguchi, 2011 Supergravity based inflation models: a review, https://doi.org/10.1088/0264-9381/28/10/103001 Class. Quant. Grav.28 103001 [1101.2488] · Zbl 1217.83005 · doi:10.1088/0264-9381/28/10/103001
[5] A.D. Linde, 1990 Particle physics and inflationary cosmology Contemp Concepts Phys.5 1 [hep-th/0503203]
[6] A.J. Tolley and M. Wyman, 2010 The Gelaton Scenario: Equilateral non-Gaussianity from multi-field dynamics, https://doi.org/10.1103/PhysRevD.81.043502 Phys. Rev. D 81 043502 [0910.1853] · doi:10.1103/PhysRevD.81.043502
[7] S. Cremonini, Z. Lalak and K. Turzynski, 2011 Strongly Coupled Perturbations in Two-Field Inflationary Models J. Cosmol. Astropart. Phys.2011 03 016 [1010.3021]
[8] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, 2011 Features of heavy physics in the CMB power spectrum J. Cosmol. Astropart. Phys.2011 01 030 [1010.3693]
[9] D. Baumann and D. Green, 2011 Equilateral Non-Gaussianity and New Physics on the Horizon J. Cosmol. Astropart. Phys.2011 09 014 [1102.5343]
[10] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, 2004 Ghost inflation J. Cosmol. Astropart. Phys.2004 04 001 [hep-th/0312100]
[11] A. Ashoorioon, D. Chialva and U. Danielsson, 2011 Effects of Nonlinear Dispersion Relations on Non-Gaussianities J. Cosmol. Astropart. Phys.2011 06 034 [1104.2338]
[12] R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, 2013 Effective field theory of weakly coupled inflationary models J. Cosmol. Astropart. Phys.2013 04 004 [1210.3020]
[13] R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, 2014 On degenerate models of cosmic inflation J. Cosmol. Astropart. Phys.2014 10 005 [1406.1947]
[14] A. Ashoorioon, R. Casadio, M. Cicoli, G. Geshnizjani and H.J. Kim, 2018 Extended Effective Field Theory of Inflation J. High Energy Phys. JHEP02(2018)172 [1802.03040] · Zbl 1387.83119 · doi:10.1007/JHEP02(2018)172
[15] D. Wands, 2010 Local non-Gaussianity from inflation, https://doi.org/10.1088/0264-9381/27/12/124002 Class. Quant. Grav.27 124002 [1004.0818] · Zbl 1190.83132 · doi:10.1088/0264-9381/27/12/124002
[16] X. Chen, 2010 Primordial Non-Gaussianities from Inflation Models, https://doi.org/10.1155/2010/638979 Adv. Astron.2010638979 [1002.1416] · doi:10.1155/2010/638979
[17] Y. Wang, 2014 Inflation, Cosmic Perturbations and Non-Gaussianities, https://doi.org/10.1088/0253-6102/62/1/19 Commun. Theor. Phys.62 109 [1303.1523] · Zbl 1294.83001 · doi:10.1088/0253-6102/62/1/19
[18] S. Renaux-Petel, 2015 Primordial non-Gaussianities after Planck 2015: an introductory review, https://doi.org/10.1016/j.crhy.2015.08.003 Comptes Rendus Physique16 969 [1508.06740] · doi:10.1016/j.crhy.2015.08.003
[19] S. Garcia-Saenz, S. Renaux-Petel and J. Ronayne, 2018 Primordial fluctuations and non-Gaussianities in sidetracked inflation J. Cosmol. Astropart. Phys.2018 07 057 [1804.11279] · Zbl 1527.83134
[20] S. Renaux-Petel and K. Turzyński, 2016 Geometrical Destabilization of Inflation, https://doi.org/10.1103/PhysRevLett.117.141301 Phys. Rev. Lett.117 141301 [1510.01281] · doi:10.1103/PhysRevLett.117.141301
[21] S. Renaux-Petel, K. Turzyński and V. Vennin, 2017 Geometrical destabilization, premature end of inflation and Bayesian model selection J. Cosmol. Astropart. Phys.2017 11 006 [1706.01835] · Zbl 1515.83437
[22] M. Dias, J. Frazer and D. Seery, 2015 Computing observables in curved multifield models of inflation—A guide (with code) to the transport method J. Cosmol. Astropart. Phys.2015 12 030 [1502.03125]
[23] M. Dias, J. Frazer, D.J. Mulryne and D. Seery, 2016 Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code J. Cosmol. Astropart. Phys.2016 12 033 [1609.00379]
[24] D.J. Mulryne and J.W. Ronayne, PyTransport: A Python package for the calculation of inflationary correlation functions, [1609.00381]
[25] D. Seery, CppTransport: a platform to automate calculation of inflationary correlation functions, [1609.00380]
[26] J.W. Ronayne and D.J. Mulryne, 2018 Numerically evaluating the bispectrum in curved field-space— with PyTransport 2.0 J. Cosmol. Astropart. Phys.2018 01 023 [1708.07130] · Zbl 1527.83166
[27] S. Butchers and D. Seery, 2018 Numerical evaluation of inflationary 3-point functions on curved field space—with the transport method & CppTransport J. Cosmol. Astropart. Phys.2018 07 031 [1803.10563]
[28] P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, 2006 Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies J. High Energy Phys. JHEP12(2006)080 [hep-th/0606090] · Zbl 1226.83089
[29] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, 2008 The Effective Field Theory of Inflation J. High Energy Phys. JHEP03(2008)014 [0709.0293]
[30] A.R. Brown, Hyperinflation, [1705.03023]
[31] S. Mizuno and S. Mukohyama, 2017 Primordial perturbations from inflation with a hyperbolic field-space, https://doi.org/10.1103/PhysRevD.96.103533 Phys. Rev. D 96 103533 [1707.05125] · doi:10.1103/PhysRevD.96.103533
[32] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, 2007 Observational signatures and non-Gaussianities of general single field inflation J. Cosmol. Astropart. Phys.2007 01 002 [hep-th/0605045]
[33] R. Holman and A.J. Tolley, 2008 Enhanced Non-Gaussianity from Excited Initial States J. Cosmol. Astropart. Phys.2008 05 001 [0710.1302]
[34] P.D. Meerburg, J.P. van der Schaar and P.S. Corasaniti, 2009 Signatures of Initial State Modifications on Bispectrum Statistics J. Cosmol. Astropart. Phys.2009 05 018 [0901.4044]
[35] P.D. Meerburg, J.P. van der Schaar and M.G. Jackson, 2010 Bispectrum signatures of a modified vacuum in single field inflation with a small speed of sound J. Cosmol. Astropart. Phys.2010 02 001 [0910.4986]
[36] N. Agarwal, R. Holman, A.J. Tolley and J. Lin, 2013 Effective field theory and non-Gaussianity from general inflationary states J. High Energy Phys. JHEP05(2013)085 [1212.1172] · Zbl 1342.83511 · doi:10.1007/JHEP05(2013)085
[37] L. Senatore, K.M. Smith and M. Zaldarriaga, 2010 Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data J. Cosmol. Astropart. Phys.2010 01 028 [0905.3746]
[38] D. Babich, P. Creminelli and M. Zaldarriaga, 2004 The Shape of non-Gaussianities J. Cosmol. Astropart. Phys.2004 08 009 [astro-ph/0405356]
[39] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[40] S. Weinberg, 2005 Quantum contributions to cosmological correlations, https://doi.org/10.1103/PhysRevD.72.043514 Phys. Rev. D 72 043514 [hep-th/0506236] · doi:10.1103/PhysRevD.72.043514
[41] P. Creminelli and M. Zaldarriaga, 2004 Single field consistency relation for the 3-point function J. Cosmol. Astropart. Phys.2004 10 006 [astro-ph/0407059]
[42] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, 2006 Limits on non-Gaussianities from wmap data J. Cosmol. Astropart. Phys.2006 05 004 [astro-ph/0509029]
[43] J.R. Fergusson and E.P.S. Shellard, 2009 The shape of primordial non-Gaussianity and the CMB bispectrum, https://doi.org/10.1103/PhysRevD.80.043510 Phys. Rev. D 80 043510 [0812.3413] · doi:10.1103/PhysRevD.80.043510
[44] P.D. Meerburg and D.N. Spergel, 2014 Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data, https://doi.org/10.1103/PhysRevD.89.063537 Phys. Rev. D 89 063537 [1308.3705] · doi:10.1103/PhysRevD.89.063537
[45] A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, 2014 Reconciliation of High Energy Scale Models of Inflation with Planck J. Cosmol. Astropart. Phys.2014 02 025 [1306.4914]
[46] S.M. Carroll, M. Hoffman and M. Trodden, 2003 Can the dark energy equation - of - state parameter w be less than -1?, https://doi.org/10.1103/PhysRevD.68.023509 Phys. Rev. D 68 023509 [astro-ph/0301273] · doi:10.1103/PhysRevD.68.023509
[47] J.M. Cline, S. Jeon and G.D. Moore, 2004 The Phantom menaced: Constraints on low-energy effective ghosts, https://doi.org/10.1103/PhysRevD.70.043543 Phys. Rev. D 70 043543 [hep-ph/0311312] · doi:10.1103/PhysRevD.70.043543
[48] D. Langlois and S. Renaux-Petel, 2008 Perturbations in generalized multi-field inflation J. Cosmol. Astropart. Phys.2008 04 017 [0801.1085]
[49] D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, 2008 Primordial perturbations and non-Gaussianities in DBI and general multi-field inflation, https://doi.org/10.1103/PhysRevD.78.063523 Phys. Rev. D 78 063523 [0806.0336] · doi:10.1103/PhysRevD.78.063523
[50] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, 2006 Causality, analyticity and an IR obstruction to UV completion J. High Energy Phys. JHEP10(2006)014 [hep-th/0602178]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.