Abstract

A model of multi-component hybrid inflation, dubbed multi-brid inflation, in which various observable quantities including the non-Gaussianity parameter fNL can be analytically calculated was proposed recently. In particular, for a two-brid inflation model with an exponential potential and the condition that the end of inflation is an ellipse in the field space, it was found that, while keeping the other observational quantities within the range consistent with observations, large non-Gaussianity is possible for certain inflationary trajectories, provided that the ratio of the two masses is large. One might question whether the resulting large non-Gaussianity is specific to this particular form of the potential and the condition for the end of inflation. In this paper, we consider a model of multi-brid inflation with a potential given by an exponential function of terms quadratic in the scalar field components. We also consider a more general class of ellipses for the end of inflation than those studied previously. Then, focusing on the case of two-brid inflation, we find that large non-Gaussianity is possible in the present model even for the equal-mass case. Then by tuning the model parameters, we find that there exist models for which both the non-Gaussianity and the tensor-to-scalar ratio are large enough to be detected in the very near future.

References

1)
Salopek
D. S.
Bond
J. R.
Phys. Rev. D
1990
, vol. 
42
  
.
2)
Komatsu
E.
Spergel
D. N.
Phys. Rev. D
2001
, vol. 
63
  
3)
Babich
D.
Zaldarriaga
M.
Phys. Rev. D
2004
, vol. 
70
  
4)
Bernardeau
F.
Uzan
J. P.
Phys. Rev. D
2002
, vol. 
66
   
N. Bartolo, S. Matarrese and A. Riotto, Phys. Rev. D 69 (2004), ; hep-ph/0309033[e-print arXiv].
 
C. Gordon and K. A. Malik, Phys. Rev. D 69 (2004), ; astro-ph/0311102[e-print arXiv].
 
K. Enqvist and S. Nurmi, J. Cosmol. Astropart. Phys. 10 (2005), 013[IoP STACKS]; astro-ph/0508573[e-print arXiv].
 
D. H. Lyth, Nucl. Phys. B (Proc. Suppl.) 148 (2005), .
 
K. A. Malik and D. H. Lyth, J. Cosmol. Astropart. Phys. 09 (2006), 008[IoP STACKS]; astro-ph/0604387[e-print arXiv].
 
M. Sasaki, J. Valiviita and D. Wands, Phys. Rev. D 74 (2006), ; astro-ph/0607627[e-print arXiv].
 
J. Valiviita, M. Sasaki and D. Wands, astro-ph/0610001[e-print arXiv].
 
S. Yokoyama, T. Suyama and T. Tanaka, J. Cosmol. Astropart. Phys. 07 (2007), 013[IoP STACKS]; arXiv:0705.3178[e-print arXiv].
 
S. Yokoyama, T. Suyama and T. Tanaka, arXiv:0711.2920[e-print arXiv].
 
K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, arXiv:0802.4138[e-print arXiv].
 
T. Suyama and F. Takahashi, arXiv:0804.0425[e-print arXiv].
  
F. Bernardeau and T. Brunier, Phys. Rev. D 76 (2007), ; arXiv:0705.2501[e-print arXiv].
 
D. A. Easson, R. Gregory, D. F. Mota, G. Tasinato and I. Zavala, J. Cosmol. Astropart. Phys. 02 (2008), 010[IoP STACKS]; arXiv:0709.2666[e-print arXiv].
5)
Zaldarriaga
M.
Phys. Rev. D
2004
, vol. 
69
   
G. N. Felder and L. Kofman, hep-ph/0606256[e-print arXiv].
 
T. Suyama and M. Yamaguchi, Phys. Rev. D 77 (2008), ; arXiv:0709.2545[e-print arXiv].
 
F. Bernardeau, L. Kofman and J. P. Uzan, Phys. Rev. D 70 (2004), ; astro-ph/0403315[e-print arXiv].
6)
Bernardeau
F.
Uzan
J. P.
Phys. Rev. D
2003
, vol. 
67
  
7)
Dvali
G.
Gruzinov
A.
Zaldarriaga
M.
Phys. Rev. D
2004
, vol. 
69
  
9)
Lyth
D. H.
J. Cosmol. Astropart. Phys.
2005
, vol. 
11
  
10)
Alabidi
L.
Lyth
D.
J. Cosmol. Astropart. Phys.
2006
, vol. 
08
   
L. Alabidi, J. Cosmol. Astropart. Phys. 10 (2006), 015[IoP STACKS]; astro-ph/0604611[e-print arXiv].
11)
Barnaby
N.
Cline
J. M.
Phys. Rev. D
2007
, vol. 
75
  
; astro-ph/0611750[e-print arXiv]; J. Cosmol. Astropart. Phys. 07 (2007), 017[IoP STACKS]; arXiv:0704.3426[e-print arXiv]; J. Cosmol. Astropart. Phys. 06 (2008), 030[IoP STACKS]; arXiv:0802.3218[e-print arXiv].
12)
Chambers
A.
Rajantie
A.
Phys. Rev. Lett.
2008
, vol. 
100
  
13)
Silverstein
E.
Tong
D.
Phys. Rev. D
2004
, vol. 
70
  
14)
Alishahiha
M.
Silverstein
E.
Tong
D.
Phys. Rev. D
2004
, vol. 
70
   
D. Seery and J. E. Lidsey, J. Cosmol. Astropart. Phys. 06 (2005), 003[IoP STACKS]; astro-ph/0503692[e-print arXiv].
 
X. Chen, M. X. Huang, S. Kachru and G. Shiu, J. Cosmol. Astropart. Phys. 01 (2007), 002[IoP STACKS]; hep-th/0605045[e-print arXiv].
 
M. X. Huang, G. Shiu and B. Underwood, Phys. Rev. D 77 (2008), ; arXiv:0709.3299[e-print arXiv].
 
D. Langlois, S. Renaux-Petel, D. A. Steer and T. Tanaka, arXiv:0804.3139[e-print arXiv]; arXiv:0806.0336[e-print arXiv].
 
F. Arroja, S. Mizuno and K. Koyama, arXiv:0806.0619[e-print arXiv].
15)
Sasaki
M.
Prog. Theor. Phys.
2008
, vol. 
120
  
16)
Sasaki
M.
Stewart
E. D.
Prog. Theor. Phys.
1996
, vol. 
95
  
17)
Sasaki
M.
Tanaka
T.
Prog. Theor. Phys.
1998
, vol. 
99
  
18)
Wands
D.
Malik
K. A.
Lyth
D. H.
Liddle
A. R.
Phys. Rev. D
2000
, vol. 
62
  
19)
Lyth
D. H.
Malik
K. A.
Sasaki
M.
J. Cosmol. Astropart. Phys.
2005
, vol. 
05
  
20)
Lyth
D. H.
Rodriguez
Y.
Phys. Rev. Lett.
2005
, vol. 
95
  
21)
Cogollo
H. R. S.
Rodriguez
Y.
Valenzuela-Toledo
C. A.
J. Cosmol. Astropart. Phys.
2008
, vol. 
08
  
22)
Sasaki
M.
Class. Quantum Grav.
2007
, vol. 
24
  
23)
Starobinsky
A. A.
JETP Lett.
1985
, vol. 
42
 pg. 
152
  
[Pisma Zh. Eksp. Teor. Fiz. 42 (1985), 124].
24)
Liddle
A. R.
Parkinson
D.
Leach
S. M.
Mukherjee
P.
Phys. Rev. D
2006
, vol. 
74
  
25)
Dunkley
J.
et al. , 
WMAP Collaboration
 
26)
Komatsu
E.
et al. , 
WMAP Collaboration
 

Citing Article(s):

  1. Progress of Theoretical Physics Vol. 122 No. 3 (2009) pp. 779–803 :Influence on Observation from IR Divergence during Inflation. I Yuko Urakawa and Takahiro Tanaka

  2. Progress of Theoretical Physics Vol. 122 No. 5 (2009) pp. 1207–1238 :Influence on Observation from IR Divergence during Inflation. II Yuko Urakawa and Takahiro Tanaka