×

Design of funnel function-based discrete-time sliding mode control. (English) Zbl 1542.93246

Summary: This study presents the design and analysis of a novel funnel function-based sliding mode reaching law for uncertain discrete-time systems. The presented reaching law is featured by the funnel function, which is established on the basis of the switching function, and the perturbation estimation technique. As compared with previous researches, the developed method is capable of regulating both transient and steady-state performance. The system trajectory can be maintained within a predefined boundary, i.e. the desired limit of the trajectory evolution, described by the funnel function in the presence of disturbances. Theoretical analyses confirm the convergence and boundedness of the controlled system. A practical verification example is given to demonstrate the validity of the presented method.
© 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology

MSC:

93C55 Discrete-time control/observation systems
93B12 Variable structure systems
93C41 Control/observation systems with incomplete information
Full Text: DOI

References:

[1] SinghS.SivaramakrishnanJ.: ‘Sliding mode control design for parametric uncertain stochastic systems with state delay using functional observer’, IET Control Theory Appl., 2019, 13, (4), pp. 562-571 · Zbl 1434.93089
[2] SharmaN.K.JanardhananS.: ‘Discrete higher order sliding mode: concept to validation’, IET Control Theory Appl., 2017, 11, (8), pp. 1098-1103
[3] ZhouH.LaoL.ChenY. et al.: ‘Discrete‐time sliding mode control with an input filter for an electro‐hydraulic actuator’, IET Control Theory Appl., 2017, 11, (9), pp. 1333-1340
[4] FanX.ZhangQ.RenJ.: ‘Event‐triggered sliding mode control for discrete‐time singular system’, IET Control Theory Appl., 2018, 12, (17), pp. 2390-2398
[5] ChangJ.: ‘Robust discrete‐time model reference sliding‐mode controller design with state and disturbance estimation’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 4065-4074
[6] GaoW.WangY.HomaifaA.: ‘Discrete‐time variable structure control systems’, IEEE Trans. Ind. Electron., 1995, 42, (2), pp. 117-122
[7] LatosińskiP.: ‘Sliding mode control based on the reaching law approach – a brief survey’. 22nd Int. Conf. on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 28-31 August 2017, pp. 519-524
[8] YuX.WangB.LiX.: ‘Computer‐controlled variable structure systems: the state‐of‐the‐art’, IEEE Trans. Ind. Inf., 2012, 8, (2), pp. 197-205
[9] Singh S. JanardhananS.: ‘Stochastic sliding mode control for parametric uncertain systems using functional observer’, IEEE Trans. Circuits Syst. Express Briefs, 2019, 66, (8), pp. 1346-1350
[10] DuH.ChenX.WenX. et al.: ‘Discrete‐time fast terminal sliding mode control for permanent magnet linear motor’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 9916-9927
[11] BartoszewiczA.LeśniewskiP.: ‘Reaching law approach to the sliding mode control of periodic review inventory systems’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (3), pp. 810-817
[12] BartoszewiczA.LeśniewskiP.: ‘New switching and nonswitching type reaching laws for SMC of discrete time system’, IEEE Trans. Control Syst. Technol., 2016, 24, (3), pp. 670-677
[13] BartoszewiczA.LeśniewskiP.: ‘Reaching law for DSMC systems with relative degree 2 switching variable’, Int. J. Control, 2017, 90, (8), pp. 1626-1638 · Zbl 1367.93116
[14] ChakrabartyS.BartoszewiczA.: ‘Improved robustness and performance of discrete time sliding mode control systems’, ISA Trans., 2016, 65, (3), pp. 143-149
[15] NiuY.HoD.WangZ.: ‘Improved sliding mode control for discrete‐time systems via reaching law’, IET Control Theory Appl., 2010, 4, (11), pp. 2245-2251
[16] MaH.WuJ.XiongZ.: ‘Discrete‐time sliding‐mode control with improved quasi‐sliding‐mode domain’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 6292-6304
[17] DuH.YuX.ChenM. et al.: ‘Chattering‐free discrete‐time sliding mode control’, Automatica, 2016, 68, (3), pp. 87-91 · Zbl 1334.93041
[18] MaH.WuJ.XiongZ.: ‘A novel exponential reaching law of discrete‐time sliding‐mode control’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 3840-3850
[19] ChakrabartyS.BandyopadhyayB.: ‘A generalized reaching law for discrete time sliding mode control’, Automatica, 2015, 52, (3), pp. 83-86 · Zbl 1309.93035
[20] ChakrabartyS.BandyopadhyayB.: ‘A generalized reaching law with different convergence rates’, Automatica, 2016, 63, (3), pp. 34-37 · Zbl 1329.93042
[21] QuS.XiaX.ZhangJ.: ‘Dynamics of discrete‐time sliding‐mode‐control uncertain systems with a disturbance compensator’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 3502-3510
[22] EunY.KimJ.KimK. et al.: ‘Discrete‐time variable structure controller with a decoupled disturbance compensator and it application to a CNC servomechanism’, IEEE Trans. Control Syst. Technol., 1999, 7, (4), pp. 414-423
[23] EunY.ChoD.: ‘Robustness of multivariable discrete‐time variable structure control’, Int. J. Control, 1999, 72, (12), pp. 1106-1115 · Zbl 0941.93010
[24] MaH.LiY.: ‘Multi‐power reaching law based discrete‐time sliding mode control’, IEEE Access, 2019, 7, pp. 49822-49829
[25] IlchmannA.RyanE.P.TownsendP.: ‘Tracking control with prescribed transient behaviour for systems of known relative degree’, Syst. Control Lett., 2006, 55, (5), pp. 396-406 · Zbl 1129.93502
[26] HacklC.M.: ‘High‐gain position control’, Int. J. Control, 2011, 84, (10), pp. 1695-1716 · Zbl 1236.93057
[27] SuW.C.DrakunovS.V.OzgunerU.: ‘An O(T^2) boundary layer in sliding mode for sampled‐data systems’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 482-485 · Zbl 0972.93039
[28] AbidiK.XuJ.YuX.: ‘On the discrete‐time integral sliding mode control’, IEEE Trans. Autom. Control, 2007, 52, (4), pp. 709-715 · Zbl 1366.93091
[29] ChakrabartyS.BandyopadhyayB.: ‘Minimum ultimate band design of discrete sliding mode control’, Asian J. Control, 2015, 18, (1), pp. 1-9
[30] WangS.YuH.YuJ. et al.: ‘Neural‐network‐based adaptive funnel control for servo mechanisms with unknown dead‐zone’, IEEE Trans. Cybern., 2020, 50, (4), pp. 1383-1394
[31] YanX.XuJ.ZhuY. et al.: ‘Downlink average rate and SINR distribution in cellular networks’, IEEE Trans. Commun., 2016, 64, (2), pp. 847-862
[32] XuJ.AbidiK.: ‘Discrete‐time output integral sliding‐mode control for a piezomotor‐driven linear motion stage’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 3917-3926
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.