×

Sliding mode control design for parametric uncertain stochastic systems with state delay using functional observer. (English) Zbl 1434.93089

Summary: This study is concerned with the problem of the functional observer-based sliding mode control (SMC) design for parametric uncertain discrete-time delayed stochastic systems includes mismatched parameter uncertainty in the state matrix and in the delayed state matrix. Stability analysis of sliding function is presented in the time delayed stochastic system with a linear matrix inequality approach. Moreover, it is shown that the state trajectories can be driven onto the specified sliding surface despite the presence of state delay, unmatched parameter uncertainty and stochastic noise in the system. The research is motivated by the fact that the system states are not always accessible for the state feedback. Therefore, SMC is estimated using the functional observer technique. To mitigate the side effect of the parameter uncertainty on the estimation error, a sufficient condition of stability is proposed based on Gershgorin disc theorem. The claims made are validated through numerical simulations.

MSC:

93E03 Stochastic systems in control theory (general)
93B12 Variable structure systems
Full Text: DOI

References:

[1] DrazenovicB.: ‘The invariance conditions in variable structure systems’, Automatica, 1969, 5, (3), pp. 287-295 · Zbl 0182.48302
[2] EdwardsC., and SpurgeonS.: ‘Sliding mode control: theory and applications’, Series in systems and control’ (Taylor & Francis, Padstow1998)
[3] UtkinV.: ‘Variable structure systems with sliding modes’, IEEE Trans. Autom. Control, 1977, 22, (2), pp. 212-222 · Zbl 0382.93036
[4] SinghS., and SharmaB.B.: ‘Sliding mode control based anti‐synchronization scheme for hyperchaotic Lu systems’. Int. Conf. on Computer Science and Network Technology (ICCSNT 2011), Katra, Jammu, India, 2011, pp. 382-386
[5] SinghS.: ‘Active control systems for anti‐synchronization based on sliding mode control’. 2011 2nd Int. Conf. on Computer and Communication Technology (ICCCT 2011), Allahabad, India, 2011, pp. 113-117
[6] SinghS., and SharmaB.B.: ‘Sliding mode control‐based stabilisation and secure communication scheme for hyperchaotic systems’, Int. J. Autom. Control, 2012, 6, (1), pp. 1-20
[7] SinghS.: ‘Single input sliding mode control for hyperchaotic Lu system with parameter uncertainty’, Int. J. Dyn. Control, 2016, 4, (4), pp. 504-514
[8] TangC.Y., and MisawaE.A.: ‘Discrete variable structure control for linear multivariable systems’, ASME J. Dyn. Syst. Meas. Control, 1998, 122, (4), pp. 783-792
[9] FurutaK.: ‘Sliding mode control of a discrete system’, Syst. Control Lett., 1990, 14, (2), pp. 145-152 · Zbl 0692.93043
[10] KükrerO., and MakhamrehH.: ‘A new discrete‐time quasi‐sliding mode control strategy’. IEEE 12th Int. Conf. on Compatibility, Power Electronics and Power Engineering (CPE‐POWERENG 2018), Doha, Qatar, 2018, pp. 1-4
[11] NguyenM.L.ChenX., and YangF.: ‘Discrete‐time quasi‐sliding‐mode control with prescribed performance function and its application to piezo‐actuated positioning systems’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 942-950
[12] FengY.XueC., and YuX.et al.: ‘On a discrete‐time quasi‐sliding mode control’. 2018 15th Int. Workshop on Variable Structure Systems (VSS), Graz, Austria, 2018, pp. 251-254
[13] SinghS.SharmaN.K., and JanardhananS.: ‘A modified discrete‐time sliding surface design for unmatched uncertainties’. 2017 Australian and New Zealand Control Conf. (ANZCC), Gold Coast, QLD, Australia, 2017, pp. 179-183
[14] XiZ., and HeskethT.: ‘Brief paper: discrete‐time integral sliding mode control for systems with matched and unmatched uncertainties’, IET Control Theory Applic., 2010, 4, (5), pp. 889-896
[15] HouH.YuX., and ZhangQ.et al.: ‘Reaching law based sliding mode control for discrete time system with uncertainty’. 2018 IEEE 27th Int. Symp. on Industrial Electronics (ISIE), Cairns, QLD, Australia, 2018, pp. 1155-1160
[16] KharitonovV.: ‘Time‐delay systems: Lyapunov functionals and matrices’ (Control Engineering, Birkhäuser, Boston, 2012)
[17] JeungE.T.OhD.C., and KimJ.H.et al.: ‘Robust controller for uncertain systems with time delays: {LMI} approach’, Automatica, 1996, 32, (8), pp. 1229-1231 · Zbl 0854.93057
[18] CheresE.GutmanS., and PalmorZ.J.: ‘Stabilization of uncertain dynamic systems including state delay’, IEEE Trans. Autom. Control, 1989, 34, (11), pp. 1199-1203 · Zbl 0693.93059
[19] XiaY., and JiaY.: ‘Robust sliding‐mode control for uncertain time‐delay systems: an LMI approach’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 1086-1091 · Zbl 1364.93608
[20] WangY.XiaY., and ShenH.et al.: ‘SMC design for robust stabilization of nonlinear Markovian jump singular systems’, IEEE Trans. Autom. Control, 2018, 63, (1), pp. 219-224 · Zbl 1390.93695
[21] WangY.GaoY., and KarimiH.R.et al.: ‘Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (10), pp. 1-9
[22] HeS.SongJ., and LiuF.: ‘Robust finite‐time bounded controller design of time‐delay conic nonlinear systems using sliding mode control strategy’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (11), pp. 1-11
[23] HeS., and SongJ.: ‘Finite‐time sliding mode control design for a class of uncertain conic nonlinear systems’, IEEE/CAA J. Autom. Sin., 2017, 4, (4), pp. 809-816
[24] JanardhananS., and BandyopadhyayB.: ‘Output feedback discrete‐time sliding mode control for time delay systems’, IEE Proce. Control Theory Applic., 2006, 153, (4), pp. 387-396
[25] BandyopadhyayB.AberaA.G., and JanardhananS.et al.: ‘Sliding mode control design via reduced order model approach’, Int. J. Autom. Comput., 2007, 4, (4), pp. 329-334
[26] TrinhH., and FernandoT.: ‘Functional observers for dynamical systems’, vol. 420 (Springer, Berlin, Heidelberg, 2012) · Zbl 1244.93002
[27] AldeenM., and TrinhH.: ‘Reduced‐order linear functional observer for linear systems’, IEE Proc. Control Theory Applic., 1999, 146, (5), pp. 399-405
[28] SrivastavaP.SinghS., and JanardhananS.: ‘Linear functional observers for unforced multi‐output nonlinear systems’, IFAC‐PapersOnLine, 2018, 51, (1), pp. 708-712. 5th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2018
[29] DarouachM.: ‘Existence and design of functional observers for linear systems’, IEEE Trans. Autom. Control, 2000, 45, (5), pp. 940-943 · Zbl 0972.93008
[30] DarouachM.: ‘Linear functional observers for systems with delays in state variables’, IEEE Trans. Autom. Control, 2001, 46, (3), pp. 491-496 · Zbl 1056.93503
[31] DarouachM.: ‘Linear functional observers for systems with delays in state variables: the discrete‐time case’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 228-233 · Zbl 1365.93222
[32] ChenB.YuL., and ZhangW.A.: ‘Robust kalman filtering for uncertain state delay systems with random observation delays and missing measurements’, IET Control Theory Applic., 2011, 5, (17), pp. 1945-1954
[33] BoukalY.DarouachM., and ZasadzinskiM.et al.: ‘Large‐scale fractional‐order systems: stability analysis and their decentralised functional observers design’, IET Control Theory Applic., 2018, 12, (3), pp. 359-367
[34] EmamiK.AriakiaH., and FernandoT.: ‘A functional observer based dynamic state estimation technique for grid connected solid oxide fuel cells’, IEEE Trans. Energy Convers., 2018, 33, (1), pp. 96-105
[35] TrinhH.M.TehP.S., and FernandoT.L.: ‘Time‐delay systems: design of delay‐free and low‐order observers’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 2434-2438 · Zbl 1368.93061
[36] TrinhH.HuongD.C., and HienL.V.et al.: ‘Design of reduced‐order positive linear functional observers for positive time‐delay systems’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (5), pp. 555-559
[37] SinghS., and JanardhananS.: ‘Stochastic variable structure control of discrete time LTI systems with bounded disturbances’. 2015 Int. Workshop on Recent Advances in Sliding Modes (RASM), Istanbul, Turkey, 2015, pp. 1-6
[38] MehtaA.J., and BandyopadhyayB.: ‘Multirate output feedback based stochastic sliding mode control’, ASME J. Dyn. Syst. Meas. Control, 2016, 138, pp. 124503‐1-124503‐6
[39] SharmaN.K.SinghS., and JanardhananS.et al.: ‘Stochastic higher order sliding mode control’. 25th Mediterranean Conf. on Control and Automation, Valletta, Malta, 2017, pp. 649-654
[40] HaQ.P.TrinhH., and NguyenH.T.et al.: ‘Dynamic output feedback sliding‐mode control using pole placement and linear functional observers’, IEEE Trans. Ind. Electron., 2003, 50, (5), pp. 1030-1037
[41] SinghS., and JanardhananS.: ‘Sliding mode control‐based linear functional observers for discrete‐time stochastic systems’, Int. J. Syst. Sci., 2017, 48, (15), pp. 3246-3253 · Zbl 1386.93069
[42] SinghS., and JanardhananS.: ‘Functional observer design for linear discrete‐time stochasic systems’. 2017 Australian and New Zealand Control Conf. (ANZCC), Gold Coast, QLD, Australia, 2017, pp. 175-178
[43] SinghS., and JanardhananS.: ‘Functional observer‐based sliding mode control for linear discrete‐time‐delayed stochastic systems’, Int. J. Syst. Sci., 2018, 49, (9), pp. 1895-1907 · Zbl 1485.93114
[44] HuJ.WangZ., and GaoH.et al.: ‘Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 3008-3015
[45] BoukalY.ZasadzinskiM., and DarouachM.et al.: ‘Robust functional observer design for uncertain fractional‐order time‐varying delay systems’. American Control Conf. (ACC′2016), Boston, United States, 2016
[46] LinY.ShiY., and BurtonR.: ‘Modeling and robust discrete‐time sliding‐mode control design for a fluid power electrohydraulic actuator (EHA) system’, IEEE/ASME Trans. Mechatronics, 2013, 18, (1), pp. 1-10
[47] NguyenM.C.TrinhH., and NamP.T.: ‘Linear functional observers with guaranteed convergence for discrete time‐delay systems with input/output disturbances’, Int. J. Syst. Sci., 2016, 47, (13), pp. 3193-3205 · Zbl 1346.93090
[48] XiaY.FuM., and ShiP.et al.: ‘Robust sliding mode control for uncertain discrete‐time systems with time delay’, IET Control Theory Applic., 2010, 4, (4), pp. 613-624
[49] DarouachM.: ‘Full order unknown inputs observers design for delay systems’. 2006 14th Mediterranean Conf. on Control and Automation, Ancona, Italy, 2006, pp. 1-5
[50] SinghS., and JanardhananS.: ‘Stochastic sliding mode control for parametric uncertain systems using functional observer’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, pp. 1-5
[51] SchererC., and WeilandS.: ‘Linear matrix inequalities in control’, in EricFeron (ed.), and Stephen P.Boyd (ed.) (Eds.): ‘The control systems handbook (Electrical engineering handbook) (the society for Industrial and Applied Mathematics, University City science center, Philadelphia, Pennsylvania, 2010, 2nd edn.)
[52] RaoC.R., and MitraS.K.: ‘Generalized inverse of matrices and its applications’. Probability and statistics series’ (University of California Press, Berkeley, CA, 1971) · Zbl 0236.15004
[53] BandyopadhyayB., and JanardhananS.: ‘Discrete‐time sliding mode control: a multirate output feedback approach’. Lecture notes in control and information sciences (Springer, Berlin, Heidelberg, 2005) · Zbl 1118.93019
[54] ZhengF.ChengM., and GaoW.B.: ‘Variable structure control of stochastic systems’, Syst. Control Lett., 1994, 22, (3), pp. 209-222 · Zbl 0798.93012
[55] SchererC.GahinetP., and ChilaliM.: ‘Multiobjective output‐feedback control via LMI optimization’, IEEE Trans. Autom. Control, 1997, 42, (7), pp. 896-911 · Zbl 0883.93024
[56] KennedyW.J., and GentleJ.E.: ‘Statistical computing’ (Marcel Dekker, New York, 1980) · Zbl 0435.62003
[57] BartoszewiczA.: ‘Discrete‐time quasi‐sliding‐mode control strategies’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 633-637
[58] MeyerC.D. (ed.): ‘Matrix analysis and applied linear algebra’ (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000) · Zbl 0962.15001
[59] BrewerJ. (ed.): ‘Kronecker products and matrix calculus in system theory’, IEEE Trans. Circuits Syst., 1978, 25, (9), pp. 772-781 · Zbl 0397.93009
[60] GahinetP.: ‘LMI control toolbox: for use with MATLAB; user’s guide; version 1’.computation, visualization, programming’ (Apple Hill Drive, Natick, United States1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.