×

Thin Loewner carpets and their quasisymmetric embeddings in \(S^2\). (English) Zbl 1542.30056

A metric space is called planar if it is homeomorphic to a subset of the plane \(\mathbb{R}^2\). A \(Q\)-Loewner space is a metric space whose \(Q\)-Hausdorff measure is \(Q\)-Ahlfors regular and that supports a \((1,Q)\)-Poincaré inequality. A carpet is a metric space that is homeomorphic to the standard Sierpiński carpet. A planar \(Q\)-Loewner carpet is a metric space satisfying all three of these properties.
The paper under review shows that any planar \(Q\)-Loewner carpet with \(1<Q<2\) can be quasisymmetrically embedded in the plane. Moreover, it provides the first published examples of Loewner carpets with Hausdorff dimension less than 2. Infinitely many quasisymmetrically distinct such examples are constructed for any \(1<Q<2\). The method of construction is an extension of inverse limits that the authors call admissible quotiented inverse systems.
Moreover, the examples admit explicit quasisymmetric embeddings in the plane. These constructions also provide examples of strong \(A_\infty\) weights whose associated metrics cannot be bi-Lipschitzly embedded in any Banach space possessing the Radon-Nikodym property.

MSC:

30L10 Quasiconformal mappings in metric spaces
28A80 Fractals
46E36 Sobolev (and similar kinds of) spaces of functions on metric spaces; analysis on metric spaces
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
54E35 Metric spaces, metrizability

References:

[1] Ambrosio, L.; Tilli, P.Topics on analysis in metric spaces. Oxford Lecture Series in Mathematics and Its Applications, 25. Oxford University Press, Oxford, 2004. · Zbl 1080.28001
[2] Balogh, Z. M.; Rogovin, K.; Zürcher, T.The Stepanov differentiability theorem in metric measure spaces. J. Geom. Anal.14 (2004), no. 3, 405-422. doi: https://doi.org/10.1007/BF02922098 · Zbl 1069.28001 · doi:10.1007/BF02922098
[3] Barlow, M. T. Heat kernels and sets with fractal structure. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 11-40. Contemp. Math., 338. Amer. Math. Soc., Providence, RI, 2003. doi: 10.1090/conm/338/06069 · Zbl 1056.60072
[4] Bate, D.Structure of measures in Lipschitz differentiability spaces. J. Amer. Math. Soc.28 (2015), no. 2, 421-482. doi: https://doi.org/10.1090/S0894‐0347‐2014‐00810‐9 · Zbl 1307.30097 · doi:10.1090/S0894‐0347‐2014‐00810‐9
[5] Bate, D.; Speight, G.Differentiability, porosity and doubling in metric measure spaces. Proc. Amer. Math. Soc.141 (2013), no. 3, 971-985. doi: https://doi.org/10.1090/S0002‐9939‐2012‐11457‐1 · Zbl 1272.30083 · doi:10.1090/S0002‐9939‐2012‐11457‐1
[6] Björn, A.; Björn, J.Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. doi: https://doi.org/10.4171/099 · Zbl 1231.31001 · doi:10.4171/099
[7] Björn, A.; Björn, J. Local and semilocal Poincaré inequalities on metric spaces. J. Math. Pures Appl. (9)119 (2018), 158-192. doi: 10.1016/j.matpur.2018.05.005 · Zbl 1407.31006
[8] Björn, J.; Shanmugalingam, N.Poincaré inequalities, uniform domains and extension properties for Newton‐Sobolev functions in metric spaces. J. Math. Anal. Appl.332 (2007), no. 1, 190-208. doi: https://doi.org/10.1016/j.jmaa.2006.09.064 · Zbl 1132.46021 · doi:10.1016/j.jmaa.2006.09.064
[9] Bonk, M.Quasiconformal geometry of fractals. International Congress of Mathematicians. Vol. II, 1349-1373Eur. Math. Soc., Zürich, 2006. · Zbl 1102.30016
[10] Bonk, M.Uniformization of Sierpiński carpets in the plane. Invent. Math.186 (2011), no. 3, 559-665. doi: https://doi.org/10.1007/s00222‐011‐0325‐8 · Zbl 1242.30015 · doi:10.1007/s00222‐011‐0325‐8
[11] Bonk, M.; Heinonen, J.; Saksman, E. The quasiconformal Jacobian problem. In the tradition of Ahlfors and Bers, III, 77-96. Contemp. Math., 355. Amer. Math. Soc., Providence, RI, 2004. doi: 10.1090/conm/355/06446 · Zbl 1069.30036
[12] Bonk, M.; Kleiner, B.Quasisymmetric parametrizations of two‐dimensional metric spheres. Invent. Math.150 (2002), no. 1, 127-183. doi: https://doi.org/10.1007/s00222‐002‐0233‐z · Zbl 1037.53023 · doi:10.1007/s00222‐002‐0233‐z
[13] Bonk, M.; Kleiner, B.Conformal dimension and Gromov hyperbolic groups with 2‐sphere boundary. Geom. Topol.9 (2005), 219-246. doi: https://doi.org/10.2140/gt.2005.9.219 · Zbl 1087.20033 · doi:10.2140/gt.2005.9.219
[14] Bonk, M.; Kleiner, B.; Merenkov, S.Rigidity of Schottky sets. Amer. J. Math.131 (2009), no. 2, 409-443. doi: https://doi.org/10.1353/ajm.0.0045 · Zbl 1168.30005 · doi:10.1353/ajm.0.0045
[15] Bonk, M.; Merenkov, S. Quasisymmetric rigidity of square Sierpiński carpets. Ann. of Math. (2)177 (2013), no. 2, 591-643. doi: 10.4007/annals.2013.177.2.5 · Zbl 1269.30027
[16] Bourdon, M.; Kleiner, B.Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups. Groups Geom. Dyn.7 (2013), no. 1, 39-107. doi: 10.4171/GGD/177 · Zbl 1344.20059
[17] Bourdon, M.; Pajot, H.Poincaré inequalities and quasi‐conformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc.127 (1999), no. 8, 2315-2324. doi: 10.1090/S0002‐9939‐99‐04901‐1 · Zbl 0924.30030
[18] Bourdon, M.; Pajot, H.Rigidity of quasi‐isometries for some hyperbolic buildings. Comment. Math. Helv.75 (2000), no. 4, 701-736. doi: 10.1007/s000140050146 · Zbl 0976.30011
[19] Bourdon, M.; Pajot, H.Cohomologie l_p et espaces de Besov. J. Reine Angew. Math.558 (2003), 85-108. doi: https://doi.org/10.1515/crll.2003.043 · Zbl 1044.20026 · doi:10.1515/crll.2003.043
[20] Burago, D.; Burago, Y.; Ivanov, S.A course in metric geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033 · Zbl 0981.51016
[21] Buyalo, S.; Schroeder, V.Elements of asymptotic geometry. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/036 · Zbl 1169.53031
[22] Cheeger, J.Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal.9 (1999), no. 3, 428-517. doi: https://doi.org/10.1007/s000390050094 · Zbl 0942.58018 · doi:10.1007/s000390050094
[23] Cheeger, J.; Colding, T. H.On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom.46 (1997), no. 3, 406-480. · Zbl 0902.53034
[24] Cheeger, J.; Kleiner, B.Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon‐Nikodým property. Geom. Funct. Anal.19 (2009), no. 4, 1017-1028. doi: https://doi.org/10.1007/s00039‐009‐0030‐6 · Zbl 1200.58007 · doi:10.1007/s00039‐009‐0030‐6
[25] Cheeger, J.; Kleiner, B.Inverse limit spaces satisfying a Poincaré inequality. Anal. Geom. Metr. Spaces3 (2015), no. 1, 15-39. doi: https://doi.org/10.1515/agms‐2015‐0002 · Zbl 1331.46016 · doi:10.1515/agms‐2015‐0002
[26] Cheeger, J.; Kleiner, B.; Schioppa, A.Infinitesimal structure of differentiability spaces, and metric differentiation. Anal. Geom. Metr. Spaces4 (2016), no. 1, 104-159. doi: https://doi.org/10.1515/agms‐2016‐0005 · Zbl 1360.30047 · doi:10.1515/agms‐2016‐0005
[27] Clais, A.Combinatorial modulus on boundary of right‐angled hyperbolic buildings. Anal. Geom. Metr. Spaces4 (2016), no. 1, 1-531. doi: https://doi.org/10.1515/agms‐2016‐0001 · Zbl 1373.20052 · doi:10.1515/agms‐2016‐0001
[28] Claytor, S.Peanian continua not imbeddable in a spherical surface. Annals of Mathematics38 (1937), no. 3, 631-646. doi: https://doi.org/10.2307/1968606 · JFM 63.0564.02 · doi:10.2307/1968606
[29] David, G.; Semmes, S. Strong \(A_{\operatorname{\infty}}\) weights, Sobolev inequalities and quasi‐conformal mappings. Analysis and partial differential equations, 101-111. Lecture Notes in Pure and Appl. Math., 122. Dekker, New York, 1990. · Zbl 0752.46014
[30] Eriksson‐Bique, S.Characterizing spaces satisfying Poincaré inequalities and applications to differentiability. Geom. Funct. Anal.29 (2019), no. 1, 119-189. doi: https://doi.org/10.1007/s00039‐019‐00479‐3 · Zbl 1415.30033 · doi:10.1007/s00039‐019‐00479‐3
[31] Eriksson‐Bique, S.; Gill, J. T.; Lahti, P.; Shanmnugalingam, N.Asymptotic behavior of BV functions and sets of finite perimeter in metric measure spaces. Preprint, 2018. 1810.05310 [math.MG]
[32] Eriksson‐Bique, S.; Gong, J.Thick carpets and sponges that support Poincaré inequalities. Preprint, 2019. 1910.02236 [math.MG]
[33] Fukaya, K.Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math.87 (1987), no. 3, 517-547. doi: https://doi.org/10.1007/BF01389241 · Zbl 0589.58034 · doi:10.1007/BF01389241
[34] Gromov, M.Metric structures for Riemannian and non‐Riemannian spaces. Modern Birkhäuser Classics, Birkhäuser Boston, Boston, 2007. · Zbl 1113.53001
[35] Hassinsky, P.A sewing problem in metric spaces. Ann. Acad. Sci. Fenn. Math.34 (2009), no. 2, 319-345. · Zbl 1191.30022
[36] Hassinsky, P.Empilements de cercles et modules combinatoires. Ann. Inst. Fourier (Grenoble)59 (2009), no. 6, 2175-2222. · Zbl 1189.30080
[37] Hassinsky, P. Hyperbolic groups with planar boundaries. Invent. Math. 201 (2015), no. 1, 239-307. doi: 10.1007/s00222‐014‐0552‐x · Zbl 1360.20035
[38] Heinonen, J.Lectures on analysis on metric spaces. Universitext, Springer, New York, 2001. doi: https://doi.org/10.1007/978‐1‐4613‐0131‐8 · Zbl 0985.46008 · doi:10.1007/978‐1‐4613‐0131‐8
[39] Heinonen, J.; Koskela, P.Quasiconformal maps in metric spaces with controlled geometry. Acta Math.181 (1998), no. 1, 1-61. doi: https://doi.org/10.1007/BF02392747 · Zbl 0915.30018 · doi:10.1007/BF02392747
[40] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J. T.Sobolev classes of Banach space‐valued functions and quasiconformal mappings. J. Anal. Math.85 (2001), 87-139. doi: https://doi.org/10.1007/BF02788076 · Zbl 1013.46023 · doi:10.1007/BF02788076
[41] Hurewicz, W.; Wallman, H.Dimension Theory. Princeton Mathematical Series, 4. Princeton University Press, Princeton, N.J., 1941. · JFM 67.1092.03
[42] Jerison, D.The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J.53 (1986), no. 2, 503-523. doi: https://doi.org/10.1215/S0012‐7094‐86‐05329‐9 · Zbl 0614.35066 · doi:10.1215/S0012‐7094‐86‐05329‐9
[43] Kapovich, M.; Kleiner, B. Hyperbolic groups with low‐dimensional boundary. Ann. Sci. École Norm. Sup. (4)33 (2000), no. 5, 647-669. doi: 10.1016/S0012‐9593(00)01049‐1 · Zbl 0989.20031
[44] Kechris, A. S.Classical descriptive set theory. Graduate Texts in Mathematics, 156. Springer, New York, 1995. doi: https://doi.org/10.1007/978‐1‐4612‐4190‐4 · Zbl 0819.04002 · doi:10.1007/978‐1‐4612‐4190‐4
[45] Keith, S.Modulus and the Poincaré inequality on metric measure spaces. Math. Z.245 (2003), no. 2, 255-292. doi: https://doi.org/10.1007/s00209‐003‐0542‐y · Zbl 1037.31009 · doi:10.1007/s00209‐003‐0542‐y
[46] Keith, S.; Laakso, T.Conformal Assouad dimension and modulus. Geom. Funct. Anal.14 (2004), no. 6, 1278-1321. doi: https://doi.org/10.1007/s00039‐004‐0492‐5 · Zbl 1108.28008 · doi:10.1007/s00039‐004‐0492‐5
[47] Kinneberg, K.Lower bounds for codimension‐1 measure in metric manifolds. Rev. Mat. Iberoam.34 (2018), no. 3, 1103-1118. doi: https://doi.org/10.4171/RMI/1018 · Zbl 1475.28003 · doi:10.4171/RMI/1018
[48] Kleiner, B. The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity. International Congress of Mathematicians. Vol. II, 743-768. Eur. Math. Soc., Zürich, 2006. · Zbl 1108.30014
[49] Kleiner, B.; Schioppa, A.PI spaces with analytic dimension 1 and arbitrary topological dimension. Indiana Univ. Math. J.66 (2017), no. 2, 495-546. doi: https://doi.org/10.1512/iumj.2017.66.5979 · Zbl 1372.30064 · doi:10.1512/iumj.2017.66.5979
[50] Korte, R.Geometric implications of the Poincaré inequality. Results Math.50 (2007), no. 1‐2, 93-107. doi: https://doi.org/10.1007/s00025‐006‐0237‐x · Zbl 1146.46019 · doi:10.1007/s00025‐006‐0237‐x
[51] Korte, R.; Kansanen, O. E.Strong \(A_{\operatorname{\infty}} \)‐weights are \(A_{\operatorname{\infty}} \)‐weights on metric spaces. Rev. Mat. Iberoam.27 (2011), no. 1, 335-354. doi: https://doi.org/10.4171/rmi/638 · Zbl 1223.42016 · doi:10.4171/rmi/638
[52] Kuratowski, C.Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae15 (1930), no. 1, 271-283. · JFM 56.1141.03
[53] Laakso, T. J.Ahlfors Q‐regular spaces with arbitrary \(Q > 1\) admitting weak Poincaré inequality. Geom. Funct. Anal.10 (2000), no. 1, 111-123. doi: https://doi.org/10.1007/s000390050003 · Zbl 0962.30006 · doi:10.1007/s000390050003
[54] Laakso, T. J.Plane with \(A_{\operatorname{\infty}} \)‐weighted metric not bi‐Lipschitz embeddable to \(R^N\). Bull. London Math. Soc.34 (2002), no. 6, 667-676. doi: https://doi.org/10.1112/S0024609302001200 · Zbl 1029.30014 · doi:10.1112/S0024609302001200
[55] Li, W. Quasisymmetric embeddability of weak tangents. Ann. Fenn. Math. 46 (2021), no. 2, 909‐–944. doi: 10.5186/aasfm.2021.4656 · Zbl 1475.30124
[56] Mackay, J. M; Tyson, J. T.Conformal dimension: theory and application. University Lecture Series, 54. American Mathematical Society, Providence RI, 2010. doi: 10.1090/ulect/054 · Zbl 1201.30002
[57] Mackay, J. M.; Tyson, J. T.; Wildrick, K.Modulus and Poincaré inequalities on non‐self‐similar Sierpiński carpets. Geom. Funct. Anal.23 (2013), no. 3, 985-1034. doi: https://doi.org/10.1007/s00039‐013‐0227‐6 · Zbl 1271.30032 · doi:10.1007/s00039‐013‐0227‐6
[58] Merenkov, S.; Wildrick, K.Quasisymmetric Koebe uniformization. Rev. Mat. Iberoam.29 (2013), no. 3, 859-909. doi: https://doi.org/10.4171/RMI/743 · Zbl 1294.30043 · doi:10.4171/RMI/743
[59] Moore, R. L.A theorem concerning continuous curves. Bull. Amer. Math. Soc.23 (1917), no. 5, 233-236. doi: https://doi.org/10.1090/S0002‐9904‐1917‐02926‐6 · JFM 46.0308.03 · doi:10.1090/S0002‐9904‐1917‐02926‐6
[60] Munkres, J. R.Topology: a first course. Prentice‐Hall, Englewood Cliffs, N.J., 1975. · Zbl 0306.54001
[61] Ntalampekos, D.Potential theory on Sierpiński carpets ‐ with applications to uniformization. Lecture Notes in Mathematics, 2268. Springer, Cham, 2020. doi: 10.1007/978‐3‐030‐50805‐0 · Zbl 1472.31001
[62] Pansu, P.Dimension conforme et sphère à l’infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Ser. A I Math.14 (1989), no. 2, 177-212. doi: https://doi.org/10.5186/aasfm.1989.1424 · Zbl 0722.53028 · doi:10.5186/aasfm.1989.1424
[63] Pisier, G.Martingales in Banach spaces. Cambridge Studies in Advanced Mathematics, 155. Cambridge University Press, Cambridge, 2016. · Zbl 1382.46002
[64] Potapov, A. A.; Zhang, W. Simulation of new ultra‐wide band fractal antennas based on fractal labyrinths. Proceedings of the 2016 CIE International Conference on Radar (RADAR), 319-323, 2016. doi: https://doi.org/10.1109/RADAR.2016.8059186 · doi:10.1109/RADAR.2016.8059186
[65] Schioppa, A.Poincaré inequalities for mutually singular measures. Anal. Geom. Metr. Spaces3 (2015), no. 1, 40-45. doi: https://doi.org/10.1515/agms‐2015‐0003 · Zbl 1310.26017 · doi:10.1515/agms‐2015‐0003
[66] Schioppa, A.The Poincaré inequality does not improve with blow‐up. Anal. Geom. Metr. Spaces4 (2016), no. 1, 363-398. doi: https://doi.org/10.1515/agms‐2016‐0018 · Zbl 1442.31008 · doi:10.1515/agms‐2016‐0018
[67] Schioppa, A.An example of a differentiability space which is PI‐unrectifiable. Preprint, 2018. 1611.01615 [math.MG]
[68] Semmes, S.Bi‐Lipschitz mappings and strong \(A_{\operatorname{\infty}}\) weights. Ann. Acad. Sci. Fenn. Ser. A I Math.18 (1993), no. 2, 211-248. · Zbl 0742.46010
[69] Semmes, S. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.)2 (1996), no. 2, 155-295. doi: 10.1007/BF01587936 · Zbl 0870.54031
[70] Shanmugalingam, N.Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana16 (2000), no. 2, 243-279. doi: https://doi.org/10.4171/RMI/275 · Zbl 0974.46038 · doi:10.4171/RMI/275
[71] Stein, E. M.Harmonic analysis: real‐variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, N.J., 1993. · Zbl 0821.42001
[72] Tarafdar, S.; Franz, A.; Schulzky, C.; Hoffmann, K. H.Modelling porous structures by repeated Sierpinski carpets. Phys. A292 (2001), no. 1‐4, 1‐8. doi: https://doi.org/10.1016/S0378‐4371(00)00573‐2 · Zbl 0972.37034 · doi:10.1016/S0378‐4371(00)00573‐2
[73] Tukia, P.; Väisälä, J.Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), no. 1, 97-114. doi: https://doi.org/10.5186/aasfm.1980.0531 · Zbl 0403.54005 · doi:10.5186/aasfm.1980.0531
[74] Tyson, J.Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Math.23 (1998), no. 2, 525-548. · Zbl 0910.30022
[75] Tyson, J. T.; Wu, J.‐M.Quasiconformal dimensions of self‐similar fractals. Rev. Mat. Iberoam.22 (2006), no. 1, 205-258. doi: https://doi.org/10.4171/RMI/454 · Zbl 1108.30015 · doi:10.4171/RMI/454
[76] Wagner, K.Über eine Eigenschaft der ebenen Komplexe. Math. Ann.114 (1937), no. 1, 570-590. doi: https://doi.org/10.1007/BF01594196 · Zbl 0017.19005 · doi:10.1007/BF01594196
[77] Whyburn, G. T.Topological characterization of the Sierpiński curve. Fund. Math.45 (1958), 320-324. doi: https://doi.org/10.4064/fm‐45‐1‐320‐324 · Zbl 0081.16904 · doi:10.4064/fm‐45‐1‐320‐324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.