×

Infinitesimal structure of differentiability spaces, and metric differentiation. (English) Zbl 1360.30047

Summary: We prove metric differentiation for differentiability spaces in the sense of Cheeger [D. Bate, J. Am. Math. Soc. 28, No. 2, 421–482 (2015; Zbl 1307.30097); J. Cheeger, Geom. Funct. Anal. 9, No. 3, 428–517 (1999; Zbl 0942.58018); S. Keith, Adv. Math. 183, No. 2, 271–315 (2004; Zbl 1077.46027)]. As corollaries we give a new proof of one of the main results of [Zbl 0942.58018], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [Zbl 1077.46027)] is equal to 1, and new nonembeddability results.

MSC:

30L99 Analysis on metric spaces
30L05 Geometric embeddings of metric spaces

References:

[1] [1] G. Alberti. Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, 123(2):239-274, 1993.; · Zbl 0791.26008
[2] G. Alberti, M. Csörnyei, and D. Preiss. Structure of null sets in the plane and applications. In European Congress of Mathematics, pages 3-22. Eur. Math. Soc., Zürich, 2005.; · Zbl 1088.28002
[3] G. Alberti, M. Csörnyei, and D. Preiss. Differentiability of Lipschitz functions, structure of null sets, and other problems. In Proceedings of the International Congress of Mathematicians. Volume III, pages 1379-1394, New Delhi, 2010. Hindustan Book Agency.; · Zbl 1251.26010
[4] L. Ambrosio. Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(3):439-478, 1990.; · Zbl 0724.49027
[5] L. Ambrosio, M. Colombo, and Simone Di Marino. Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. arxiv:1212.3779, 2012.; · Zbl 1370.46018
[6] L. Ambrosio, N. Gigli, and G. Savaré. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 29(3):969-996, 2013.; · Zbl 1287.46027
[7] L. Ambrosio and B. Kirchheim. Currents in metric spaces. Acta Math., 185(1):1-80, 2000.; · Zbl 0984.49025
[8] L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318(3):527-555, 2000.; · Zbl 0966.28002
[9] L. Ambrosio and P. Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.; · Zbl 1080.28001
[10] D. Bate. Structure of measures in lipschitz differentiability spaces. arxiv:1208:1954, 2012.; · Zbl 1307.30097
[11] D. Bate. Structure of measures in lipschitz differentiability spaces. JAMS, 2014.; · Zbl 1307.30097
[12] D. Bate and S. Li. The geometry of radon-nikodym lipschitz differentiability spaces. ArXiv e-prints, 2015.;
[13] D. Bate and G. Speight. Differentiability, porosity, and doubling in metric measure spaces. arxiv:1108.0318, 2011.; · Zbl 1272.30083
[14] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428-517, 1999.; · Zbl 0942.58018
[15] J. Cheeger and B. Kleiner. Metric differentiation for PI spaces.; · Zbl 1214.46013
[16] J. Cheeger and B. Kleiner. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon- Nikodým property. Geom. Funct. Anal., 19(4):1017-1028, 2009.; · Zbl 1200.58007
[17] J. Cheeger and B. Kleiner. Differentiating maps into L1, and the geometry of BV functions. Ann. of Math. (2), 171(2):1347- 1385, 2010.; · Zbl 1194.22009
[18] J. Cheeger and B. Kleiner. Metric differentiation, monotonicity and maps to L1. Invent. Math., 182(2):335-370, 2010.; · Zbl 1214.46013
[19] J. Cheeger and B. Kleiner. Realization of metric spaces as inverse limits, and bilipschitz embedding in L1. Geom. Funct. Anal., 23(1):96-133, 2013.; · Zbl 1277.46012
[20] J. Cheeger and B. Kleiner. Inverse limit spaces satisfying a Poincaré inequality. Anal. Geom. Metr. Spaces, 3:15-39, 2015.; · Zbl 1331.46016
[21] G. David and S. Semmes. Fractured fractals and broken dreams, volume 7 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1997. Self-similar geometry through metric and measure.; · Zbl 0887.54001
[22] G. C. David. Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces. ArXiv e-prints, May 2014.; · Zbl 1318.28008
[23] R. J. Elliott and P. E. Kopp. Mathematics of financial markets. Springer Finance. Springer-Verlag, New York, second edition, 2005.; · Zbl 1140.91032
[24] J. Heinonen and P. Koskela. Quasiconformalmaps in metric spaces with controlled geometry. ActaMath., 181(1):1-61, 1998.; · Zbl 0915.30018
[25] A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.; · Zbl 0819.04002
[26] S. Keith. Modulus and the Poincaré inequality on metric measure spaces. Math. Z., 245(2):255-292, 2003.; · Zbl 1037.31009
[27] S. Keith. A differentiable structure for metric measure spaces. Adv. Math., 183(2):271-315, 2004.; · Zbl 1077.46027
[28] S. Keith. Measurable differentiable structures and the Poincaré inequality. Indiana Univ. Math. J., 53(4):1127-1150, 2004.; · Zbl 1088.53030
[29] B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc., 121(1):113-123, 1994.; · Zbl 0806.28004
[30] B. Kirchheim and V.Magnani. A counterexample to metric differentiability. Proc. Edinb.Math. Soc. (2), 46(1):221-227, 2003.; · Zbl 1059.26007
[31] B. Kleiner. The local structure of length spaces with curvature bounded above. Math. Z., 231(3):409-456, 1999.; · Zbl 0940.53024
[32] B. Kleiner and B. Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math., (86):115-197 (1998), 1997.; · Zbl 0910.53035
[33] B. Kleiner and J. Mackay. Differentiable structures on metric measure spaces: A Primer. ArXiv e-prints, August 2011.; · Zbl 1339.30001
[34] N. Korevaar and R. M. Schoen. Sobolev spaces and harmonicmaps for metric space targets. Comm. Anal. Geom., 1(3-4):561- 659, 1993.; · Zbl 0862.58004
[35] T. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal., 10(1):111- 123, 2000.; · Zbl 0962.30006
[36] J. Mitchell. On Carnot-Carathéodory metrics. J. Differential Geom., 21(1):35-45, 1985.; · Zbl 0554.53023
[37] S. D. Pauls. The large scale geometry of nilpotent Lie groups. Comm. Anal. Geom., 9(5):951-982, 2001.; · Zbl 1005.53033
[38] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.; · Zbl 0925.00005
[39] W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991.; · Zbl 0867.46001
[40] A. Schioppa. Metric Currents and Alberti representations. ArXiv e-prints, March 2014.; · Zbl 1357.53046
[41] A. Schioppa. Poincaré inequalities for mutually singular measures. Anal. Geom. Metr. Spaces, 3:40-45, 2015.; · Zbl 1310.26017
[42] Andrea Schioppa. Derivations and Alberti representations. Adv. Math., 293:436-528, 2016.; · Zbl 1335.53053
[43] Andrea Schioppa. The Lip-lip equality is stable under blow-up. Calc. Var. Partial Differential Equations, 55(1):Art. 22, 30, 2016.; · Zbl 1346.53043
[44] N. Weaver. Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal., 178(1):64-112, 2000.; · Zbl 0979.46035
[45] S. Wenger. Filling invariants at infinity and the Euclidean rank of Hadamard spaces. Int. Math. Res. Not., pages Art. ID 83090, 33, 2006.; · Zbl 1107.53026
[46] S. Wenger. Gromov hyperbolic spaces and the sharp isoperimetric constant. Invent. Math., 171(1):227-255, 2008.; · Zbl 1147.53036
[47] W. P. Ziemer. Extremal length and p-capacity. Michigan Math. J., 16:43-51, 1969.; · Zbl 0172.38701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.