×

Modelling porous structures by repeated Sierpinski carpets. (English) Zbl 0972.37034

Summary: Porous materials such as sedimentary rocks often show a fractal character at certain length scales. Deterministic fractal generators, iterated upto several stages and then repeated periodically, provide a realistic model for such systems. On the fractal, diffusion is anomalous, and obeys the law \(\langle r^2\rangle\sim t^{2/d_w}\), where \(\langle r^2\rangle\) is the mean square distance covered in time \(t\) and \(d_w>2\) is the random walk dimension. The question is: How is the macroscopic diffusivity related to the characteristics of the small scale fractal structure, which is hidden in the large-scale homogeneous material? In particular, do structures with same \(d_w\) necessarily lead to the same diffusion coefficient at the same iteration stage? The present paper tries to shed some light on these questions.

MSC:

37H99 Random dynamical systems
Full Text: DOI

References:

[1] Mandelbrot, B. B., Fractals - Form, Chance and Dimension (1977), W.H. Freeman: W.H. Freeman San Francisco, CA · Zbl 0376.28020
[2] Havlin, S.; Ben-Avraham, D., Diffusion in disordered media, Adv. Phys., 36, 695-798 (1987)
[3] Bouchaud, J. P.; Georges, A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990)
[4] A. Franz, C. Schulzky, K.H. Hoffmann, The Einstein relation for finitely ramified Sierpinski carpets, Nonlinearity (2000), submitted for publication.; A. Franz, C. Schulzky, K.H. Hoffmann, The Einstein relation for finitely ramified Sierpinski carpets, Nonlinearity (2000), submitted for publication. · Zbl 1067.82025
[5] Falconer, K. J., Techniques in Fractal Geometry (1997), Wiley: Wiley Chichester, UK · Zbl 0869.28003
[6] Dasgupta, R.; Ballabh, T. K.; Tarafdar, S., Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: a new algorithm for infinite fractal lattices, J. Phys. A, 32, 6503-6516 (1999) · Zbl 0961.82015
[7] Barlow, M. T.; Hattori, K.; Hattori, T.; Watanabe, H., Restoration of isotropy on fractals, Phys. Rev. Lett., 75, 3042-3045 (1995)
[8] R.F. Bass, Diffusions on the Sierpinski carpet, in: N. Kono (Ed.), Trends in Probability and Related Analysis, Proceedings of SAP ’96, World Scientific, Singapore, 1997, pp. 1-34.; R.F. Bass, Diffusions on the Sierpinski carpet, in: N. Kono (Ed.), Trends in Probability and Related Analysis, Proceedings of SAP ’96, World Scientific, Singapore, 1997, pp. 1-34. · Zbl 1010.60075
[9] S. Seeger, A. Franz, C. Schulzky, K.H. Hoffmann, Random walks on finitely ramified Sierpinski carpets, Comp. Phys. Comm. (2000), accepted.; S. Seeger, A. Franz, C. Schulzky, K.H. Hoffmann, Random walks on finitely ramified Sierpinski carpets, Comp. Phys. Comm. (2000), accepted. · Zbl 1001.65008
[10] Franz, A.; Schulzky, C.; Seeger, S.; Hoffmann, K. H., An efficient implementation of the exact enumeration method for random walks on Sierpinski carpets, Fractals, 8, 155-161 (2000)
[11] C. Schulzky, A. Franz, K.H. Hoffmann, Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets, SIGSAM Bull. (2000) accepted for publication.; C. Schulzky, A. Franz, K.H. Hoffmann, Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets, SIGSAM Bull. (2000) accepted for publication. · Zbl 1066.82512
[12] Chandrasekhar, S., Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15, 1-89 (1943) · Zbl 0061.46403
[13] Dollinger, J. W.; Metzler, R.; Nonnenmacher, T. F., Bi-asymptotic fractals: fractals between lower and upper bounds, J. Phys. A, 31, 3839-3847 (1998) · Zbl 0930.37005
[14] Stanley, H. E., Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media, J. Stat. Phys., 36, 843-859 (1984)
[15] Roy, S.; Tarafdar, S., Archie’s law from a fractal model for porous rocks, Phys. Rev. B, 55, 8038-8041 (1997)
[16] Katz, A. J.; Thompson, A. H., Fractal sandstone pores: implications for conductivity and pore formation, Phys. Rev. Lett., 54, 1325-1328 (1985)
[17] Roy, S.; Dasgupta, R.; Tarafdar, S., A fractal model for superionic aerogels, Solid State Ion., 86-88, 363-367 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.