×

Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian. (English. Russian original) Zbl 1541.81063

Russ. Math. 67, No. 7, 1-8 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 7, 3-12 (2023).
Summary: In this article, we present a three-particle lattice model Hamiltonian \({{H}_{{\mu ,\lambda }}}\), \(\mu ,\lambda > 0\) by making use nonlocal potential. The Hamiltonian under consideration acts as a tensor sum of two Friedrichs models \({{h}_{{\mu ,\lambda }}}\) which comprises a rank 2 perturbation associated with a system of three quantum particles on a \(d\)-dimensional lattice. The current study investigates the number of eigenvalues associated with the Hamiltonian. Furthermore, we provide the suitable conditions on the existence of eigenvalues localized inside, in the gap and below the bottom of the essential spectrum of \({{H}_{{\mu ,\lambda }}}\).

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
70B05 Kinematics of a particle
70F07 Three-body problems
70H05 Hamilton’s equations
35P05 General topics in linear spectral theory for PDEs
35B20 Perturbations in context of PDEs
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47A10 Spectrum, resolvent
Full Text: DOI

References:

[1] Graf, G. M.; Schenker, D., “2-Magnon scattering in the Heisenberg model,” Ann. Inst. Henri Poincaré Phys, Théor., 67, 91-107 (1997) · Zbl 0879.47043
[2] Faria da Veiga, P. A.; Ioriatti, L.; O’Carroll, M., Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians, Phys. Rev. E, 66, 16130 (2002) · doi:10.1103/PhysRevE.66.016130
[3] Mattis, D., The few-body problem on a lattice, Rev. Mod. Phys., 58, 361-379 (1986) · doi:10.1103/revmodphys.58.361
[4] Mogilner, A. I., Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: Problems and results, Adv. Sov. Math., 5, 139-194 (1991) · Zbl 0741.34055 · doi:10.1090/advsov/005/05
[5] V. A. Malyshev and R. A. Minlos, Linear Infinite-Particle Operators, Translations of Mathematical Monographs, Vol. 143 (American Mathematical Society, 1995). doi:10.1090/mmono/143 · Zbl 0827.46065
[6] Albeverio, S.; Lakaev, S. N.; Djumanova, R. Kh., The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles, Rep. Math. Phys., 63, 359-380 (2009) · Zbl 1180.81061 · doi:10.1016/s0034-4877(09)00017-2
[7] Albeverio, S.; Lakaev, S. N.; Muminov, Z. I., On the number of eigenvalues of a model operator associated to a system of three-particles on lattices, Russ. J. Math. Phys., 14, 377-387 (2007) · Zbl 1176.81045 · doi:10.1134/s1061920807040024
[8] Rasulov, T. Kh.; Mukhitdinov, R. T., The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice, Russ. Math., 58, 52-59 (2014) · Zbl 1298.47009 · doi:10.3103/s1066369x1401006x
[9] Heine, V., Solid State Physics (1970), New York: Academic, New York · doi:10.1016/S0081-1947(08)60069-7
[10] Karpenko, B. V.; Dyakin, V. V.; Budrina, G. A., Two electrons in Hubbard model, Phys. Met. Metallogr., 61, 702-706 (1986)
[11] Muminov, M. É., Expression for the number of eigenvalues of a Friedrichs model, Math. Notes, 82, 67-74 (2007) · Zbl 1219.81126 · doi:10.1134/S0001434607070097
[12] Albeverio, S.; Lakaev, S. N.; Muminov, Z. I., The threshold effects for a family of Friedrichs models under rank one perturbations, J. Math. Anal. Appl., 330, 1152-1168 (2007) · Zbl 1115.81023 · doi:10.1016/j.jmaa.2006.08.046
[13] Albeverio, S.; Lakaev, S. N.; Rasulov, T. H., On the spectrum of an Hamiltonian in Fock Space. Discrete spectrum asymptotics, J. Stat. Phys., 127, 191-220 (2007) · Zbl 1126.81022 · doi:10.1007/s10955-006-9240-6
[14] Muminov, M. I.; Rasulov, T. H.; Tosheva, N. A., Analysis of the discrete spectrum of the family of 3 × 3 operator matrices, Commun. Math. Anal., 23, 17-37 (2020) · Zbl 1453.81029
[15] Rasulov, T. H.; Dilmurodov, E. B., Infinite number of eigenvalues of 2 × 2 operator matrices: Asymptotic discrete spectrum, Theor. Math. Phys., 205, 1564-1584 (2019) · Zbl 1458.81023 · doi:10.1134/s0040577920120028
[16] Rasulov, T. H.; Dilmurodov, E. B., “Analysis of the spectrum of a 2 × 2 operator matrix. Discrete spectrum asymptotics,” Nanosystems: Phys., Chem, Math., 11, 138-144 (2020) · doi:10.17586/2220-8054-2020-11-2-138-144
[17] Rasulov, T. H.; Dilmurodov, E. B., Infinite number of eigenvalues of 2 × 2 operator matrices: Asymptotic discrete spectrum, Theor. Math. Phys., 205, 1564-1584 (2020) · Zbl 1458.81023 · doi:10.1134/S0040577920120028
[18] Rasulov, T. H.; Dilmurodov, E. B., “Issledovanie chislovoi oblasti znachenii odnoi operatornoi matritsy,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-, Mat. Nauki, 2, 50-63 (2014) · Zbl 1413.81022 · doi:10.14498/vsgtu1275
[19] Rasulov, T. H.; Dilmurodov, E. B., Estimates for the bounds of the essential spectrum of a 2 × 2 operator matrix, Contemp. Math., 1, 170-186 (2020) · doi:10.37256/cm.142020409
[20] Reed, M.; Simon, B., Methods of Modern Mathematical Physics: Functional Analysis (1979), New York: Academic, New York · Zbl 0405.47007 · doi:10.1016/B978-0-12-585001-8.X5001-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.