×

Investigations of the numerical range of a operator matrix. (Russian. English summary) Zbl 1413.81022

Summary: We consider a \(2\times2\) operator matrix \(A\) (so-called generalized Friedrichs model) associated with a system of at most two quantum particles on \({\mathrm d}\)-dimensional lattice. This operator matrix acts in the direct sum of zero- and one-particle subspaces of a Fock space. We investigate the structure of the closure of the numerical range \(W(A)\) of this operator in detail by terms of its matrix entries for all dimensions of the torus \({\mathbf T}^{\mathrm d}\). Moreover, we study the cases when the set \(W(A)\) is closed and give necessary and sufficient conditions under which the spectrum of \(A\) coincides with its numerical range.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35P20 Asymptotic distributions of eigenvalues in context of PDEs
47N50 Applications of operator theory in the physical sciences

References:

[1] [1] O. Toeplitz, “Das algebraische Analogon zu einem Satze von Fejér”, Math. Z., 2:1–2 (1918), 187–197 · JFM 46.0157.02 · doi:10.1007/BF01212904
[2] [2] F. Hausdorff, “Der Wertvorrat einer Bilinearform”, Math. Z., 3:1 (1919), 314–316 · JFM 47.0088.02 · doi:10.1007/BF01292610
[3] [3] A. Wintner, “Zur Theorie der beschränkten Bilinearformen”, Math. Z., 30:1 (1929), 228–281 · JFM 55.0826.01 · doi:10.1007/BF01187766
[4] [4] H. Langer, A. S. Markus, V. I. Matsaev, C. Tretter, “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330:1–3 (2001), 89–112 · Zbl 0998.15035 · doi:10.1016/S0024-3795(01)00230-0
[5] [5] C. Tretter, M. Wagenhofer, “The block numerical range of an \(n × n\) block operator matrix”, SIAM. J. Matrix Anal. & Appl., 24:4 (2003), 1003–1017 · Zbl 1051.47003 · doi:10.1137/S0895479801394076
[6] [6] L. Rodman, I. M. Spitkovsky, “Ratio numerical ranges of operators”, Integr. Equ. Oper. Theory, 71:2 (2011), 245–257 · Zbl 1239.47006 · doi:10.1007/s00020-011-1898-8
[7] [7] W. S. Cheung, X. Liu, T. Y. Tam, “Multiplicities, boundary points and joint numerical ranges”, Operators and Matrices, 5:1 (2011), 41–52 · Zbl 1213.15019 · doi:10.7153/oam-05-02
[8] [8] H. L. Gau , C. K. Li, Y. T. Poon, N. S. Sze, “Higher rank numerical ranges of normal matrices”, SIAM. J. Matrix Anal. & Appl., 32 (2011), 23–43, arXiv: · Zbl 1223.15032 · doi:10.1137/09076430X
[9] [9] B. Kuzma, C. K. Li, L. Rodman, “Tracial numerical range and linear dependence of operators”, Electronic J. Linear Algebra, 22 (2011), 22–52 · Zbl 1226.47007
[10] [10] C. K. Li, Y. T. Poon, “Generalized numerical range and quantum error correction”, J. Operator Theory, 66:2 (2011), 335–351 · Zbl 1261.47012
[11] [11] K. Gustafson, D. K. M. Rao, Numerical range: The field of values of linear operators and matrices, Springer, Berlin, 1997, xiv+190 pp.
[12] [12] D. S. Keeler, L. Rodman, I. M. Spitkovsky, “The numerical range of \(3 × 3\) matrices”, Linear Algebra and its Appl., 252:1–3 (1997), 115–139 · Zbl 0876.15020 · doi:10.1016/0024-3795(95)00674-5
[13] [13] H.-L. Gau, “Elliptic numerical range of \(4 × 4\) matrices”, Taiwanese J. Math., 10:1 (2006), 117–128 · Zbl 1099.15022
[14] [14] D. Henrion, “Semidefinite geometry of the numerical range”, Electronic J. Linear Algebra, 20 (2010), 322–332 · Zbl 1205.14076
[15] [15] R. A. Minlos, Ya. G. Sinai, “Spectra of stochastic operators arising in lattice models of a gas”, Theoret. and Math. Phys., 2:2 (1970), 167–176 · doi:10.1007/BF01036789
[16] [16] M. A. Lavrentiev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli [Problems of Hydrodynamics and their Mathematical Models], Nauka, Moscow, 1973, 416 pp. (In Russian)
[17] [17] A. I. Mogilner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet Math., 5 (1991), 139–194 · Zbl 0741.34055
[18] [18] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. · Zbl 0521.47001
[19] [19] M. Salomyak, M. Birman, Spektral’naya teoriya samosopryazhennykh operatorov v gil’bertovom prostranstve [Spectral Theory of Self-Adjoint Operators in Hilbert Space], Leningrad State University Press, Leningrad, 1980, 264 pp. (In Russian)
[20] [20] T. H. Rasulov, Kh. Kh. Turdiev, “Some spectral properties of a generalized Friedrichs model”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(23) (2011), 181–188 (In Russian) · Zbl 1449.81023 · doi:10.14498/vsgtu904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.