×

The threshold effects for a family of Friedrichs models under rank one perturbations. (English) Zbl 1115.81023

Summary: A family of Friedrichs models under rank one perturbations \(h_\mu (p)\), \(p\in(-\pi,\pi]^3\), \(\mu>0\), associated to a system of two particles on the three-dimensional lattice \(\mathbb{Z}^3\) is considered. We prove the existence of a unique eigenvalue below the bottom of the essential spectrum of \(h_\mu(p)\) for all non-trivial values of \(p\) under the assumption that \(h_\mu(0)\) has either a threshold energy resonance (virtual level) or a threshold eigenvalue. The threshold energy expansion for the Fredholm determinant associated to a family of Friedrichs models is also obtained.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R., The low energy expansion in non-relativistic scattering theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 37, 1-28 (1982) · Zbl 0528.35076
[2] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2004), Springer-Verlag: Springer-Verlag New York: Chelsea/Amer. Math. Soc., (with an appendix by P. Exner)
[3] Albeverio, S.; Lakaev, S. N.; Makarov, K. A.; Muminov, Z. I., The threshold effects for the two-particle Hamiltonians on lattices, Comm. Math. Phys., 262, 91-115 (2006) · Zbl 1116.81020
[4] Albeverio, S.; Lakaev, S. N.; Muminov, Z. I., Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics, Ann. Henri Poincaré, 5, 743-772 (2004) · Zbl 1056.81026
[5] Albeverio, S.; Lakaev, S. N.; Muminov, Z. I., On the number of eigenvalues of a model operator associated to a system of three-particles on lattices (14 August 2006)
[6] Carmona, R.; Lacroix, J., Spectral Theory of Random Schrödinger Operators, Probab. Appl. (1990), Birkhäuser: Birkhäuser Boston · Zbl 0717.60074
[7] Berg, C.; Christensen, J. P.R.; Ressel, P., Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Grad. Texts in Math. (1984), Springer-Verlag: Springer-Verlag New York, 289 pp · Zbl 0619.43001
[8] Jensen, A.; Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46, 583-611 (1979) · Zbl 0448.35080
[9] Faddeev, L. D., On a model of Friedrichs in the theory of perturbations of the continuous spectrum, Tr. Mat. Inst. Steklova, 73, 292-313 (1964), (in Russian) · Zbl 0148.12801
[10] Fedoryuk, M. V., Asymptotics of Integrals and Series (1987), Nauka: Nauka Moscow, (in Russian) · Zbl 0641.41001
[11] Faria da Veiga, P. A.; Ioriatti, L.; O’Carroll, M., Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians, Phys. Rev. E (3), 66, 016130 (2002), 9 pp
[12] Friedrichs, K. O., On the perturbation of continuous spectra, Comm. Appl. Math., 1, 361-406 (1948) · Zbl 0031.31204
[13] Graf, G. M.; Schenker, D., 2-Magnon scattering in the Heisenberg model, Ann. Inst. H. Poincaré Phys. Théor., 67, 91-107 (1997) · Zbl 0879.47043
[14] Klaus, M.; Simon, B., Coupling constants thresholds in non-relativistic quantum mechanics. I. Short range two body case, Ann. Phys., 130, 251-281 (1980) · Zbl 0455.35112
[15] Kondratiev, Yu. G.; Minlos, R. A., One-particle subspaces in the stochastic XY model, J. Statist. Phys., 87, 613-642 (1997) · Zbl 0937.82032
[16] Lakaev, S. N., Some spectral properties of the generalized Friedrichs model, Tr. Semin. im. I. G. Petrovskogo. Tr. Semin. im. I. G. Petrovskogo, J. Soviet Math., 45, 6, 1540-1565 (1989), 246, 248 (in Russian); translation in · Zbl 0671.47003
[17] Lakaev, S. N., Bound states and resonances for the \(N\)-particle discrete Schrödinger operator, Theoret. and Math. Phys., 91, 1, 362-372 (1992)
[18] Lakaev, S. N., The Efimov’s effect of a system of three identical quantum lattice particles, Funktsional. Anal. i Prilozhen.. Funktsional. Anal. i Prilozhen., Funct. Anal. Appl, 27, 3, 166-175 (1993), (in Russian); translation in · Zbl 0844.47041
[19] Lakshtanov, E. L.; Minlos, R. A., The spectrum of two-particle bound states of transfer matrices of Gibbs fields (an isolated bound state), Funktsional. Anal. i Prilozhen.. Funktsional. Anal. i Prilozhen., Funct. Anal. Appl., 38, 3, 202-216 (2004), (in Russian); translation in · Zbl 1127.82035
[20] Lakshtanov, E. L.; Minlos, R. A., The spectrum of two-particle bound states of transfer matrices of Gibbs fields (fields on a two-dimensional lattice: Adjacent levels), Funktsional. Anal. i Prilozhen.. Funktsional. Anal. i Prilozhen., Funct. Anal. Appl., 39, 1, 31-45 (2005), (in Russian); translation in · Zbl 1127.82036
[21] Malishev, V. A.; Minlos, R. A., Linear Infinite-Particle Operators, Transl. Math. Monogr., vol. 143 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0827.46065
[22] Mattis, D. C., The few-body problem on a lattice, Rev. Modern Phys., 58, 361-379 (1986)
[23] Minlos, R. A.; Suhov, Y. M., On the spectrum of the generator of an infinite system of interacting diffusions, Comm. Math. Phys., 206, 463-489 (1999) · Zbl 0962.60076
[24] Mogilner, A., Hamiltonians in solid state physics as multi-particle discrete Schrödinger operators: Problems and results, Adv. in Soviet Math., 5, 139-194 (1991) · Zbl 0741.34055
[25] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. III: Scattering Theory (1979), Academic Press: Academic Press New York · Zbl 0405.47007
[26] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of Operators (1979), Academic Press: Academic Press New York · Zbl 0405.47007
[27] Sobolev, A. V., The Efimov effect. Discrete spectrum asymptotics, Comm. Math. Phys., 156, 127-168 (1993) · Zbl 0785.35070
[28] Tamura, H., Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect, (Spectral and Scattering Theory and Applications. Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math., vol. 23 (1994), Math. Soc. Japan: Math. Soc. Japan Tokyo), 311-322 · Zbl 0836.35110
[29] Yafaev, D. R., On the theory of the discrete spectrum of the three-particle Schrödinger operator, Math. USSR-Sb., 23, 535-559 (1974) · Zbl 0342.35041
[30] Yafaev, D. R., The virtual level of the Schrödinger equation, J. Soviet. Math., 11, 501-510 (1979) · Zbl 0401.35038
[31] Yafaev, D. R., Scattering Theory: Some Old and New Problems, Lecture Notes in Math., vol. 1735 (2000), Springer-Verlag: Springer-Verlag Berlin, 169 pp · Zbl 0951.35003
[32] Zhizhina, E. A., Two-particle spectrum of the generator for stochastic model of planar rotators at high temperatures, J. Statist. Phys., 91, 343-368 (1998) · Zbl 0946.82040
[33] Zorich, V. A., Mathematical Analysis I (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1024.00503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.