×

A fictitious domain decomposition method for a nonlinear bonded structure. (English) Zbl 1540.74135

Summary: We study a fictitious domain decomposition method for a nonlinearly bonded structure. Starting with a strongly convex unconstrained minimization problem, we introduce an interface unknown such that the displacement problems on each subdomain become uncoupled in the saddle-point equations. The interface unknown is eliminated and a Uzawa conjugate gradient domain decomposition method is derived from the saddle-point equations of the stabilized Lagrangian functional. To avoid interface fitted meshes we use a fictitious domain approach, inspired by XFEM, which consists in cutting the finite element basis functions around the interface. Some numerical experiments are proposed to illustrate the efficiency of the proposed method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] A., Hansbo; P., Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 3523-3540 (2004) · Zbl 1068.74076
[2] Areias, P. M.A.; Belytschko, T., A Comment on the article A finite element method for the simulation of strong and weak discontinuities in solid mechanics by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg 193 (2004) 3523-2540], Comput. Methods Appl. Mech. Engrg., 195, 1275-1276 (2006) · Zbl 1378.74062
[3] Barbosa, H. J.C.; Hughes, T. J.R., The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška—Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85, 109-128 (1991) · Zbl 0764.73077
[4] Barbosa, H. J.C; Hughes, T. J.R., Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62, 1-15 (1992) · Zbl 0765.65102
[5] C., Canuto; K., Urban, Adaptive optimization of convex functionals in banach spaces, SIAM J. Numer. Anal., 42, 2043-2075 (2005) · Zbl 1081.65053
[6] D., Bresch, A direct asymptotic analysis on a nonlinear model with thin layers, Ann. Univ. Ferrara - Sez. VII - Sec. Mat., 49, 359-373 (2003) · Zbl 1232.74010
[7] D., Bresch; J., Koko, An optimization-based domain decomposition method for nonlinear wall laws in coupled systems, Math. Models Methods Appl. Sci., 14, 7, 1085-1101 (2004) · Zbl 1185.65223
[8] E., Burman; P., Hansbo, Fictitious domain finite element methods using cut elements: I a stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 2680-2686 (2010) · Zbl 1231.65207
[9] G., Geymonat; F., Krasucki; D., Marini; M., Vidrascu, A domain decomposition method for bonded structures, Math. Models Methods Appl. Sci., 8, 8, 1387-1402 (1998) · Zbl 0940.74060
[10] J., Koko, An optimization based domain decomposition method for a bonded structure, Math. Models Methods Appl. Sci., 12, 6, 857-870 (2002) · Zbl 1205.74016
[11] J., Koko, Convergence analysis of optimization-based domain decomposition methods for a bonded structure, Appl. Numer. Math., 58, 69-87 (2008) · Zbl 1131.65053
[12] J., Koko, A MATLAB mesh generator for the two-dimensional finite element method, Appl. Math. Comput., 250, 650-664 (2015) · Zbl 1328.65245
[13] J., Koko, Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach, Int. J. Model. Simul. Sci. Comput., 7 (2016)
[14] J., Haslinger; Y., Renard, A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. Anal., 47, 1474-1499 (2009) · Zbl 1205.65322
[15] J.-L., Lions, Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[16] M., Moës; J., Dolbow; T., Belytschko, A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-159 (1999) · Zbl 0955.74066
[17] M., Feistauer; K., Najzar, Finite element approximation of a problem with a non-linear Newton boundary condition, Numer. Math., 78, 403-425 (1998) · Zbl 0888.65118
[18] O., Bodart; V., Cayol; S., Court; J., Koko, XFEM-based fictitious domain method for linear elasticity model with crack, SIAM J. Sci. Comput., 38, 219-246 (2016) · Zbl 1333.74015
[19] P., Suquet, Discontinuities and plasticity, (J. J., Moreau; P. D., Panagiotopoulos, Nonsmooth Mechanics and Applications. Nonsmooth Mechanics and Applications, CISM courses and lectures, vol. 302 (1988), Springer), 279-340 · Zbl 0667.73025
[20] R., Glowinski; A., Marocco, Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Num., 9, 2, 41-76 (1975) · Zbl 0368.65053
[21] R., Glowinski; T.-W., Pan; J., Periaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., 151, 1-2, 181-184 (1998) · Zbl 0916.76052
[22] R., Glowinski; T.-W., Pan; T. I., Hesla; D., Joseph, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Comput. Methods Appl. Mech. Engrg., 184, 2-4, 241-267 (2000) · Zbl 0970.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.