×

An optimization-based domain decomposition method for nonlinear wall laws in coupled systems. (English) Zbl 1185.65223

Summary: We study an optimization-based domain decomposition method for a nonlinear wall law in a coupled system. The problem is restated as a saddle-point problem by introducing as a new variable the displacement jump across the interface. Then the minimization step of the saddle-point problem corresponds to the equilibrium equations stated in each subdomain with Lagrange multiplier as interface force. The maximization step corresponds to maximizing a (nonlinear) strictly concave functional. This could have a lot of applications in geophysical flows such as coupling ocean and atmosphere, free surface and groundwater flows.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
49K10 Optimality conditions for free problems in two or more independent variables
49M30 Other numerical methods in calculus of variations (MSC2010)
74B05 Classical linear elasticity
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Bernardi, C.et al., 31, eds. Cioranescu, D.Lions, J. L. (Elsevier, 2002) pp. 69-102.
[2] D. Bresch, A direct asymptotic analysis on a nonlinear model with thin layers, Ann. Univ. Ferrara, to appear. · Zbl 1232.74010
[3] C. Canuto and K. Urban, Adaptative optimization of convex functionals in Banach spaces, preprint Dipartimento di Matematica, Politecnico di Torino (2003).
[4] Ciarlet, P. G., Introduction to Numerical Linear Algebra and Optimization, 1988, Cambridge Univ. Press · Zbl 0672.65001
[5] Daniel, J., The Approximate Minimization of Functionals, 1970, Prentice-Hall
[6] Du, Q., SIAM J. Numer. Anal.39, 1056 (2001), DOI: 10.1137/S0036142900380273.
[7] Du, Q.Gunzburger, M. D., SIAM J. Numer. Anal.37, 1513 (2000), DOI: 10.1137/S0036142998343087.
[8] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems, 1999, SIAM · Zbl 0939.49002
[9] Feistauer, M.Najzar, K., Numer. Math.78, 403 (1998), DOI: 10.1007/s002110050318.
[10] Geymonat, G.et al., Math. Mod. Meth. Appl. Sci.8, 1387 (1998), DOI: 10.1142/S0218202598000652.
[11] Glowinski, R.Marocco, A., RAIRO Anal. Numer.2, 41 (1975).
[12] Glowinski, R.Le Tallec, P., Augmented Lagrangian interpretation of nonoverlapping Schwarz alternating method, Proc. of the Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, eds. Chan, T. F.et al. (SIAM, 1990) pp. 224-231. · Zbl 0706.65100
[13] Gunzburger, M. D.Lee, H. K., SIAM J. Numer. Anal.37, 1455 (2000), DOI: 10.1137/S0036142998332864.
[14] Gunzburger, M. D.Peterson, J., Comp. Math. Appl.37, 77 (1999), DOI: 10.1016/S0898-1221(99)00127-3.
[15] Koko, J., Math. Mod. Meth. Appl. Sci.12, 857 (2002), DOI: 10.1142/S0218202502001933.
[16] Lions, J.-L., Quelques Méthodes de Résolution des Probl é mes aux Limites non Lin é aires, 1969, Dunod · Zbl 0189.40603
[17] Lions, J.-L.Temam, R.Wang, S., Comput. Mech. Adv.1, 1 (1993). · Zbl 0825.76128
[18] Luenberger, D., Linear and Nonlinear Programming, 1989, Addison-Wesley
[19] Marini, L.Quarteroni, A., Numer. Math.55, 575 (1998), DOI: 10.1007/BF01398917.
[20] Miglio, E.Quarteroni, A.Saleri, F., Comput. Fluids32, 73 (2003), DOI: 10.1016/S0045-7930(01)00102-5.
[21] Polak, E., Computational Methods in Optimisation, 1971, Academic Press
[22] Suquet, P. M., , eds. Moreau, J. J.Panagiotopoulos, P. D. (Springer, 1988) pp. 279-340.
[23] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations, 1999, Oxford Univ. Press · Zbl 0931.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.