×

Numerical approximation to semi-linear stiff neutral equations via implicit-explicit general linear methods. (English) Zbl 1540.65185

Summary: Among the initial value problems of semi-linear neutral equations, there are a class of so-called stiff problems, where the classical explicit methods do not work as the methods have only bounded stability regions, which confine the computational stepsize to be excessively small and thus leads to an unsuccessful calculation. For resolving this difficult issue, ones turned to develop the implicit methods with unbounded stability regions to solve the stiff problems. Nevertheless, it is well-known that the implementation of an implicit method needs a large computational cost. In order to improve the computational efficiency, in [Appl. Math. Comput. 335, 196–210 (2018; Zbl 1427.65103); Int. J. Comput. Math. 97, No. 12, 2561–2581 (2020; Zbl 1480.65159)], the authors adopted the implicit-explicit (IMEX) splitting technique to derive the extended IMEX one-leg methods and IMEX Runge-Kutta methods, respectively. Unfortunately, these two methods have the serious order barrier. So far, for stiff neutral equations (SNEs), no IMEX method with order more than two has been found. To improve the computational accuracy and efficiency of IMEX methods, in the present paper, we construct a class of extended implicit-explicit general linear (EIEGL) methods for solving semi-linear SNEs. Under some suitable conditions, an EIEGL method is proved to be stable and convergent of order \(p\) whenever the underlying implicit-explicit general linear (IEGL) method has order \(p\) and stage order \(p\). With applications to several concrete problems of SNEs, the computational accuracy of EIEGL methods are further illustrated, where we also verify that the convergence order of EIEGL methods can exceed two, namely, third- and fourth-order EIEGL methods can be obtained. Moreover, based on a numerical comparison with the extended implicit general linear (EIGL) methods, the advantage of EIEGL methods in computational efficiency is shown.

MSC:

65L04 Numerical methods for stiff equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

RODAS
Full Text: DOI

References:

[1] Akrivis, G., Implicit-explicit multistep methods for nonlinear parabolic equations, Math. Comp., 82, 45-68 (2013) · Zbl 1266.65152
[2] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit runge-kutta methods for time dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[3] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[4] Barś, M.; Cardone, A.; Jackiewicz, Z.; Pierzchala, P., Error propagation for implicit-explicit general linear methods, Appl. Numer. Math., 131, 207-231 (2018) · Zbl 1446.65036
[5] Barś, M.; Izzo, G.; Jackiewicz, Z., Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability, J. Sci. Comput., 70, 1105-1143 (2017) · Zbl 1366.65070
[6] Bellen, A.; Guglielmi, N.; Zennaro, M., On the contractivity and asymptotic stability of systems of delay differential equations of neutral type, BIT, 39, 1-24 (1999) · Zbl 0917.65071
[7] Bellen, A.; Jackiewicz, Z.; Zennaro, M., Stability analysis of one-step methods for neutral delay-differential equations, Numer. Math., 52, 605-619 (1988) · Zbl 0644.65049
[8] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 0749.65042
[9] Boscarino, S., Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal., 45, 1600-1621 (2007) · Zbl 1152.65088
[10] Burrage, K.; Hundsdorfer, W. H.; Verwer, J. G., A study of B-convergence of Runge-Kutta methods, Comput., 6, 17-34 (1986) · Zbl 0572.65053
[11] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), Wiley: Wiley New York · Zbl 1167.65041
[12] Caberlin, M., Stiff ordinary and delay differential equations in biological systems (2002), McGill University, Montreal, Master’s Thesis
[13] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Extrapolation-based implicit-explicit general linear methods, Numer. Algorithms, 65, 377-399 (2014) · Zbl 1291.65217
[14] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Construction of highly stable implicit-explicit general linear methods, Dis. Contin. Dyn. Syst. Ser. S, 2015, 185-194 (2015) · Zbl 1335.65060
[15] Ding, J.; Zhang, C., An extension of numerical stability criteria for linear neutral multidelay-integro-differential equations, Appl. Math. Comput., 265, 347-351 (2015) · Zbl 1410.65247
[16] Frank, J.; Hundsdorfer, W.; Verwer, J. G., On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25, 193-205 (1997) · Zbl 0887.65094
[17] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0859.65067
[18] Hale, J. K.; Verduyn, L. S.M., Introduction To Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[19] Hu, G.; Mitsui, T., Stability analysis of numerical methods for systems of neutral delay-differential equations, BIT, 35, 504-515 (1995) · Zbl 0841.65062
[20] Hundsdorfer, W.; Ruuth, S. J., Imex extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 225, 2016-2042 (2007) · Zbl 1123.65068
[21] Izzo, G.; Jackiewicz, Z., Strong stability preserving implicit-explicit transformed general linear methods, Math. Comput. Simulation, 176, 206-225 (2020) · Zbl 1510.65144
[22] Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations (2009), Wiley: Wiley Hoboken · Zbl 1211.65095
[23] Jackiewicz, Z.; Mittelmann, H., Construction of IMEX DIMSIMs of high order and stage order, Appl. Numer. Math., 121, 234-248 (2017) · Zbl 1372.65212
[24] Koto, T., Stability of IMEX runge-kutta methods for delay differential equations, J. Comput. Appl. Math., 211, 201-212 (2008) · Zbl 1141.65065
[25] Koto, T., Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations, Front. Math. China, 4, 113-129 (2009) · Zbl 1396.65114
[26] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, New York (1993), Academic Press · Zbl 0777.34002
[27] Lambert, J., Nmuercial Methods for Ordinary Differential Systems (1991), John & Sons: John & Sons Chichester · Zbl 0745.65049
[28] Li, S., Numerical Analysis for Stiff Ordinary and Functional Differential Equations (2010), Xiangtan University Press: Xiangtan University Press Xiangtan
[29] Li, D.; Zhang, C.; Wang, W., Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Model., 35, 2711-2722 (2011) · Zbl 1219.65098
[30] Pareschi, L.; Russo, G., Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 129-155 (2005) · Zbl 1203.65111
[31] Qiu, L.; Yang, B.; Kuang, J., The NGP-stability of Runge-Kutta methods for systems of neutral delay differential equations, Numer. Math., 81, 451-459 (1999) · Zbl 0918.65061
[32] Sandu, A., Convergence results for implicit-explicit general linear methods, Appl. Numer. Math., 156, 242-264 (2020) · Zbl 1453.65167
[33] Tan, Z.; Zhang, C., Implicit-explicit one-leg methods for nonlinear stiff neutral equations, Appl. Math. Comput., 335, 196-210 (2018) · Zbl 1427.65103
[34] Tan, Z.; Zhang, C., Solving semi-linear stiff neutral equations by implicit-explicit runge-kutta methods, Int. J. Comput. Math., 97, 2561-2581 (2020) · Zbl 1480.65159
[35] Tian, H.; Kuang, J.; Qiu, L., The stability of linear multistep methods for linear systems of neutral differential equations, J. Comput. Math., 19, 125-130 (2001) · Zbl 0985.65092
[36] Wang, W.; Li, S.; Su, K., Nonlinear stability of Runge-Kutta methods for neutral delay differential equations, J. Comput. Appl. Math., 214, 175-185 (2008) · Zbl 1144.65054
[37] Wang, W.; Li, S.; Su, K., Nonlinear stability of general linear methods for neutral delay differential equations, J. Comput. Appl. Math., 224, 592-601 (2009) · Zbl 1167.65046
[38] Wang, W.; Zhang, Y.; Li, S., Nonlinear stability of one-leg methods for delay differential equations of neutral type, Appl. Numer. Math., 58, 122-130 (2008) · Zbl 1137.65052
[39] Wen, L.; Liu, X., Numerical stability of one-leg methods for neutral delay differential equations, BIT, 52, 251-269 (2012) · Zbl 1243.65081
[40] Xiao, X.; Zhang, G.; Yi, X., Two classes of implicit-explicit multistep methods for nonlinear stiff initial-value problems, Appl. Math. Comput., 247, 47-60 (2014) · Zbl 1338.65179
[41] Zhang, C., Ngp \(( \alpha )\)-stability of general linear methods for NDDEs, Comput. Math. Appl., 47, 1105-1113 (2004) · Zbl 1073.65075
[42] Zhang, H.; Sandu, A.; Blaise, S., Patitioned and implicit-explicit general linear methods for ordinary differential equations, J. Sci. Comput., 61, 119-144 (2014) · Zbl 1308.65122
[43] Zhang, H.; Sandu, A.; Blaise, S., High order implicit-explicit general linear methods with optimized stability regions, SIAM J. Sci. Comput., 38, 1430-1453 (2016) · Zbl 1337.65008
[44] Zhang, G.; Xiao, A., Stability and convergence analysis of implicit-explicit one-leg methods for stiff delay differential equations, Int. J. Comput. Math., 93, 1964-1983 (2016) · Zbl 1355.65085
[45] Zhang, C.; Zhou, S., The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differential equations, Sci. China (Ser. A), 41, 1151-1157 (1999) · Zbl 0924.65079
[46] Zhang, C.; Zhou, S., Stability analysis of LMMs for systems of neutral multidelay-differential equations, Comput. Math. Appl., 38, 113-117 (1999) · Zbl 0940.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.