×

High order implicit-explicit general linear methods with optimized stability regions. (English) Zbl 1337.65008

Summary: In the numerical solution of partial differential equations using a method-of-lines approach, the availability of high order spatial discretization schemes motivates the development of sophisticated high order time integration methods. For multiphysics problems with both stiff and nonstiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost advantage of explicit schemes with the favorable stability properties of implicit schemes. Existing high order IMEX Runge-Kutta or linear multistep methods, however, suffer from accuracy or stability limitations. This work shows that IMEX general linear methods (GLMs) are competitive alternatives to classic IMEX schemes for large problems arising in practice. High order IMEX-GLMs are constructed in the partitioned GLM framework developed earlier by the authors [J. Sci. Comput. 61, No. 1, 119–144 (2014; Zbl 1308.65122)]. The stability regions of the new schemes are optimized numerically. The resulting IMEX-GLMs have similar stability properties as IMEX Runge-Kutta methods, but they do not suffer from order reduction and are superior in terms of accuracy and efficiency. The new IMEX-GLMs have considerably better stability properties than the IMEX linear multistep methods. Numerical experiments with two- and three-dimensional test problems illustrate the potential of the new schemes to speed up complex applications.

MSC:

65C20 Probabilistic models, generic numerical methods in probability and statistics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35L65 Hyperbolic conservation laws

Citations:

Zbl 1308.65122

Software:

Gmsh; PETSc; MUMPS; RKC

References:

[1] V. Aizinger and C. Dawson, {\it A discontinuous Aalerkin method for two-dimensional flow and transport in shallow water}, Adv. Water Resources, 25 (2002), pp. 67-84.
[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, {\it A fully asynchronous multifrontal solver using distributed dynamic scheduling}, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15-41. · Zbl 0992.65018
[3] U. Ascher, S. Ruuth, and R. Spiteri, {\it Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations}, Appl. Numer. Math, 25 (1997), pp. 151-167. · Zbl 0896.65061
[4] U. Ascher, S. Ruuth, and B. Wetton, {\it Implicit-explicit methods for time-dependent partial differential equations}, SIAM J. Numer. Anal., 32 (1995), pp. pp. 797-823. · Zbl 0841.65081
[5] A. R. Bahadir, {\it A fully implicit finite-difference scheme for two-dimensional burgers’ equations}, Appl. Math. Comput., 137 (2003), pp. 131-137. · Zbl 1027.65111
[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc (2014).
[7] S. Blaise, J. Lambrechts, and E. Deleersnijder, {\it A stabilization for three-dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations}, Internat. J. Numer. Methods Fluids (2015), doi: 10.1002/fld.4197.
[8] S. Blaise and A. St-Cyr, {\it A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation}, Monthly Weather Rev., 140 (2012), pp. 978-996.
[9] S. Boscarino, {\it Error analysis of IMEX Runge––Kutta methods derived from differential-algebraic systems}, SIAM J. Numer. Anal., 45 (2007), pp. 1600-1621. · Zbl 1152.65088
[10] S. Boscarino, {\it On an accurate third order implicit-explicit Runge-Kutta method for stiff problems}, Appl. Numer. Math., 59 (2009), pp. 1515-1528. · Zbl 1162.65367
[11] S. Boscarino, L. Pareschi, and G. Russo, {\it Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit}, SIAM J. Sci. Comput., 35 (2013), pp. A22-A51. · Zbl 1264.65150
[12] S. Boscarino and G. Russo, {\it On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation}, SIAM J. Sci. Comput., 31 (2009), pp. 1926-1945. · Zbl 1193.65162
[13] J. C. Butcher and Z. Jackiewicz, {\it Diagonally implicit general linear methods for ordinary differential equations}, BIT, 33 (1993), pp. 452-472. · Zbl 0795.65043
[14] J. C. Butcher and Z. Jackiewicz, {\it Construction of diagonally implicit general linear methods of type 1 and 2 for ordinary differential equations}, Appl. Numer. Math., 21 (1996), pp. 385-415. · Zbl 0865.65056
[15] J. C. Butcher and Z. Jackiewicz, {\it Construction of high order diagonally implicit multistage integration methods for ordinary differential equations}, Appl. Numer. Math., 27 (1998), pp. 1-12. · Zbl 0933.65080
[16] J. C. Butcher and W. Wright, {\it The construction of practical general linear methods}, BIT, 43 (2003), pp. 695-721. · Zbl 1046.65054
[17] M. Calvo and C. Palencia, {\it Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems}, Math. Comp., 71 (2002), pp. 1529-1543. · Zbl 1005.65100
[18] X. Chen, {\it Generation, propagation, and annihilation of metastable patterns}, J. Differential Equations, 206 (2004), pp. 399-437. · Zbl 1061.35014
[19] R. Comblen, S. Blaise, V. Legat, J. Remacle, E. Deleersnijder, and J. Lambrechts, {\it A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Part I: space discretization}, Ocean Dynamics, 60 (2010), pp. 1371-1393.
[20] J. Frank, W. Hundsdorfer, and J. Verwer, {\it On the stability of implicit-explicit linear multistep methods}, Appl. Numer. Math., 25 (1997), pp. 193-205. · Zbl 0887.65094
[21] C. Geuzaine and J. Remacle, {\it GMSH: A 3-D finite element mesh generator with built-in pre- and post-processing facilities}, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309-1331. · Zbl 1176.74181
[22] F. Giraldo, J. Hesthaven, and T. Warburton, {\it Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations}, J. Comput. Phys., 181 (2002), pp. 499-525. · Zbl 1178.76268
[23] F. Giraldo, M. Restelli, and M. Läuter, {\it Semi-implicit formulations of the Navier-Stokes equations: Application to nonhydrostatic atmospheric modeling}, SIAM J. Sci. Comput., 32 (2010), pp. 3394-3425. · Zbl 1237.76153
[24] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu, {\it Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (numa)}, SIAM J. Sci. Comput., 35 (2013), pp. B1162-B1194. · Zbl 1280.86008
[25] F. X. Giraldo and M. Restelli, {\it A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases}, J. Comput. Phys., 227 (2008), pp. 3849-3877. · Zbl 1194.76189
[26] E. Hairer, S. Norsett, and G. Wanner, {\it Solving Ordinary Differential Equations I. Nonstiff Problems}, Springer-Verlag, Berlin, 1993. · Zbl 0789.65048
[27] W. Hundsdorfer and S. J. Ruuth, {\it IMEX extensions of linear multistep methods with general monotonicity and boundedness properties}, J. Comput. Phys., 225 (2007), pp. 2016-2042. · Zbl 1123.65068
[28] Z. Jackiewicz, {\it General Linear Methods for ODE}, Wiley, New York, 2009. · Zbl 1211.65095
[29] S. Jebens, O.Knoth, and R. Weiner, {\it Partially implicit peer methods for the compressible Euler equations}, J. Comput. Phys., 230 (2011), pp. 4955-4974. · Zbl 1416.76178
[30] A. Kameni, J. Lambrechts, J. Remacle, S. Mezani, F. Bouillault, and C. Geuzaine, {\it Discontinuous Galerkin method for computing induced fields in superconducting materials}, IEEE Trans. Magnetics, 48 (2012), pp. 591-594.
[31] T. Karna, V. Legat, and E. Deleersnijder, {\it A baroclinic discontinuous Galerkin finite element model for coastal flows}, Ocean Model., 61 (2013), pp. 1-20.
[32] J. F. Kelly and F. X. Giraldo, {\it Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode}, J. Comput. Physi., 231 (2012), pp. 7988-8008. · Zbl 1284.65134
[33] C. A. Kennedy and M. H. Carpenter, {\it Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, Appl. Numer. Math., 44 (2003), pp. 139-181. · Zbl 1013.65103
[34] R. Nair, S. Thomas, and R. Loft, {\it A discontinuous Galerkin global shallow water model}, Monthly Weather Rev., 133 (2005), pp. 876-888.
[35] L. Pareschi and G. Russo, {\it Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation}, J. Sci. Comput., 3 (2000), pp. 269-287.
[36] D. Schwanenberg and J. Köngeter, {\it A discontinuous galerkin method for the shallow water equations with source terms}, in Discontinuous Galerkin Methods, Lect. Notes Comput. Sci. Eng. 10, Springer, Berlin, 2000, pp. 419-424. · Zbl 1041.76512
[37] B. Seny, J. Lambrechts, R. Comblen, V. Legat, and J.-F. Remacle, {\it Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows}, Internat. J. Numer. Methods Fluids, 71 (2013), pp. 41-64. · Zbl 1431.65178
[38] B. Seny, J. Lambrechts, T. Toulorge, V. Legat, and J. Remacle, {\it An efficient parallel implementation of explicit multirate Runge-Kutta schemes for discontinuous Galerkin computations}, J. Comput. Phys., 256 (2014), pp. 135-160. · Zbl 1349.65482
[39] A. St-Cyr and D. Neckels, {\it A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver}, in Computational Science–ICCS 2009, Lecture Notes in Comput. Sci. 5545, Springer, Berlin, 2009, pp. 243-252.
[40] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer, {\it RKC time-stepping for advection-diffusion-reaction problems}, J. Comput. Phys., 201 (2004), pp. 61-79. · Zbl 1059.65085
[41] W. Wright, {\it General Linear Methods with Inherent Runge-Kutta Stability}, Ph.D. thesis, University of Auckland, 2002. · Zbl 1016.65049
[42] H. Zhang and A. Sandu, {\it A second-order diagonally-implicit-explicit multi-stage integration method}, Procedia CS, 9 (2012), pp. 1039-1046.
[43] H. Zhang, A. Sandu, and S. Blaise, {\it Partitioned and implicit-explicit general linear methods for ordinary differential equations}, J. Sci. Comput., 61 (2014), pp. 119-144. · Zbl 1308.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.