×

Convergence results for implicit-explicit general linear methods. (English) Zbl 1453.65167

Summary: This paper studies fixed-step convergence of implicit-explicit general linear methods. We focus on a subclass of schemes that is internally consistent, has high stage order, and favorable stability properties. Classical, index-1 differential algebraic equation, and singular perturbation convergence analyses results are given. For all these problems IMEX GLMs from the class of interest converge with the full theoretical orders under general assumptions. The convergence results require the time steps to be sufficiently small, with upper bounds that are independent on the stiffness of the problem.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

RODAS

References:

[1] Amitai, D.; Averbuch, A.; Israeli, M.; Itzikowitz, S., Implicit-explicit parallel asynchronous solver of parabolic PDEs, SIAM J. Sci. Comput., 19, 4, 1366-1404 (1998) · Zbl 0914.65092
[2] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 3, 797-823 (1995) · Zbl 0841.65081
[3] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[4] Braś, M.; Izzo, G.; Jackiewicz, Z., Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability, J. Sci. Comput., 70, 1105-1143 (2017) · Zbl 1366.65070
[5] Braś, M.; Cardone, A.; Jackiewicz, Z.; Pierzchała, P., Error propagation for implicit-explicit general linear methods, Appl. Numer. Math., 131, 207-231 (2018) · Zbl 1446.65036
[6] Burrage, K.; Butcher, J., Non-linear stability of a general class of differential equation methods, BIT Numer. Math., 20, 2, 185-203 (1980) · Zbl 0431.65051
[7] Butcher, J., General linear methods for the parallel solution of ordinary differential equations, World Sci. Ser. Appl. Anal., 2, 99-111 (1993) · Zbl 0834.65059
[8] Butcher, J., General linear methods, Comput. Math. Appl., 31, 105-112 (1996) · Zbl 0874.65057
[9] Butcher, J., General linear methods, Acta Numer., 15, 157-256 (2006) · Zbl 1113.65072
[10] Butcher, J.; Chartier, P., Parallel general linear methods for stiff ordinary differential and differential algebraic equations, Appl. Numer. Math., 17, 3, 213-222 (1995) · Zbl 0833.65073
[11] Califano, G.; Izzo, G.; Jackiewicz, Z., Starting procedures for general linear methods, Appl. Numer. Math., 120, 165-175 (2017) · Zbl 1370.65034
[12] Calvo, M. P.; de Frutos, J.; Novo, J., Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math., 37, 4, 535-549 (2001) · Zbl 0983.65106
[13] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Extrapolation-based implicit-explicit general linear methods, Numer. Algorithms, 65, 3, 377-399 (2014) · Zbl 1291.65217
[14] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Construction of highly-stable implicit-explicit general linear methods, (de Leon, M.; Feng, W.; Feng, Z.; Gomez, J.; Lu, X.; Martell, J.; Parcet, J.; Peralta-Salas, D.; Ruan, W., AIMS Proceedings, No. 0133-0189_2015_special_185 in Dynamical Systems, Differential Equations, and Applications. AIMS Proceedings, No. 0133-0189_2015_special_185 in Dynamical Systems, Differential Equations, and Applications, Madrid, Spain (2015)), 185-194 · Zbl 1335.65060
[15] Chartier, P., General linear methods for differential-algebraic equations of index one and two (August 1993), INRIA, Research report RR-1968
[16] Constantinescu, E.; Sandu, A., Extrapolated implicit-explicit time stepping, SIAM J. Sci. Comput., 31, 6, 4452-4477 (2010) · Zbl 1209.65069
[17] Cooper, G.; Sayfy, A., Additive methods for the numerical solution of ordinary differential equations, Math. Comput., 35, 1159-1172 (1980) · Zbl 0454.65053
[18] Cooper, G.; Sayfy, A., Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comput., 40, 207-218 (1983) · Zbl 0525.65053
[19] Crouzeix, M., Une methode multipas implicite-explicite pour l’approximation des equations d’evolution parabolique, Numer. Math., 35, 257-276 (1980) · Zbl 0419.65057
[20] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14 (1996), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0859.65067
[21] Hairer, E.; Lubich, C.; Roche, M., Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations, BIT Numer. Math., 28, 3, 678-700 (1988) · Zbl 0657.65093
[22] Hairer, E.; Lubich, C.; Roche, M., The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods (1989), Springer-Verlag: Springer-Verlag Berlin, New-York · Zbl 0683.65050
[23] Horn, R.; Johnson, C., Topics in Matrix Analysis (1991), Cambridge University Press · Zbl 0729.15001
[24] Hundsdorfer, W.; Jaffre, J., Implicit-explicit time stepping with spatial discontinuous finite elements, Appl. Numer. Math., 45, 231-254 (2003) · Zbl 1029.65115
[25] Izzo, G.; Jackiewicz, Z., Highly stable implicit-explicit Runge-Kutta methods, Appl. Numer. Math., 113, 71-92 (2017) · Zbl 1355.65096
[26] Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations (2009), Wiley: Wiley Hoboken, New Jersey · Zbl 1211.65095
[27] Jackiewicz, Z.; Mittelmann, H., Construction of imex dimsims of high order and stage order, Appl. Numer. Math., 121, 234-248 (2017) · Zbl 1372.65212
[28] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 1-2, 139-181 (2003) · Zbl 1013.65103
[29] Kennedy, C. A.; Carpenter, M. H., Higher-order additive Runge-Kutta schemes for ordinary differential equations, Appl. Numer. Math., 136, 183-205 (2019) · Zbl 1408.65045
[30] Lang, J.; Hundsdorfer, W., Extrapolation-based implicit-explicit peer methods with optimised stability regions, J. Comput. Phys., 337, 203-215 (2017) · Zbl 1415.65160
[31] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, (Recent Trends in Numerical Analysis (2000), Nova Science Publishers, Inc.), 269-288 · Zbl 1018.65093
[32] Ruuth, S., Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol., 34, 148-176 (1995) · Zbl 0835.92006
[33] Schneider, M.; Lang, J.; Hundsdorfer, W., Extrapolation-based super-convergent implicit-explicit peer methods with a-stable implicit part, J. Comput. Phys., 367, 121-133 (2018) · Zbl 1415.65164
[34] Schneider, M.; Lang, J.; Weiner, R., Super-convergent implicit-explicit peer methods with variable step sizes, Am. J. Comput. Appl. Math. (2019)
[35] Schneider, S., Convergence results for general linear methods on singular perturbation problems, BIT Numer. Math., 33, 670-686 (1993) · Zbl 0795.65045
[36] Schulz, S., General linear methods for linear daes (2003), Institut für Mathematik, Humboldt Universität zu Berlin, Tech. Rep. urn:nbn:de:0296-matheon-251
[37] Soleimani, B.; Weiner, R., Superconvergent IMEX peer methods, Appl. Numer. Math., 130, 70-85 (2018) · Zbl 1398.65153
[38] Soleimani, B.; Knoth, O.; Weiner, R., IMEX peer methods for fast-wave-slow-wave problems, Appl. Numer. Math., 118, 221-237 (2017) · Zbl 1367.65111
[39] Tikhonov, A.; Vasil’eva, A.; Sveshnikov, A., Differential Equations (1985), Springer Verlag · Zbl 0553.34001
[40] Verwer, J. G.; Sommeijer, B. P., An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations, SIAM J. Sci. Comput., 25, 5, 1824-1835 (2004) · Zbl 1061.65090
[41] Voigtmann, S., General linear methods for nonlinear DAEs in circuit simulation (2005), Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, Tech. Rep · Zbl 1157.78371
[42] Zhang, H.; Sandu, A., A second-order diagonally-implicit-explicit multi-stage integration method, (Proceedings of the International Conference on Computational Science ICCS 2012, vol. 9 (2012)), 1039-1046, https://doi.org/10.1016/j.procs.2012.04.112
[43] Zhang, H.; Sandu, A.; Blaise, S., Partitioned and implicit-explicit general linear methods for ordinary differential equations, J. Sci. Comput., 61, 1, 119-144 (2014) · Zbl 1308.65122
[44] Zhang, H.; Sandu, A.; Blaise, S., High order implicit-explicit general linear methods with optimized stability regions, SIAM J. Sci. Comput., 38, 3, Article A14 pp. (2016) · Zbl 1337.65008
[45] Zharovsky, E., Fast Numerical Algorithms for Advection-Diffusion Equations and Applications in Particle Dynamics (July 2012), Technische Universität Kaiserslautern
[46] Zharovsky, E.; Sandu, A., A class of IMEX two-step Runge-Kutta methods (February 2012), Computational Science Laboratory, Virginia Tech, Tech. Rep. CS TR-12-08
[47] Zharovsky, E.; Sandu, A.; Zhang, H., A class of IMEX two-step Runge-Kutta methods, SIAM J. Numer. Anal., 53, 1, 321-341 (2015) · Zbl 1327.65133
[48] Zhong, X., Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows, J. Comput. Phys., 128, 19-31 (1996) · Zbl 0861.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.