×

Three-dimensional topological field theory and symplectic algebraic geometry. I. (English) Zbl 1194.81224

Summary: We study boundary conditions and defects in a three-dimensional topological sigma-model with a complex symplectic target space \(X\) (the Rozansky-Witten model). We show that boundary conditions correspond to complex Lagrangian submanifolds in \(X\) equipped with complex fibrations. The set of boundary conditions has the structure of a 2-category; morphisms in this 2-category are interpreted physically as one-dimensional defect lines separating parts of the boundary with different boundary conditions. This 2-category is a categorification of the \({\mathbb Z}_2\)-graded derived category of \(X\); it is also related to categories of matrix factorizations and a categorification of deformation quantization (quantization of symmetric monoidal categories). In the Appendix B we describe a deformation of the B-model and the associated category of branes by forms of arbitrary even degree.

MSC:

81T45 Topological field theories in quantum mechanics
81T10 Model quantum field theories
81S10 Geometry and quantization, symplectic methods
53D55 Deformation quantization, star products
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005
[2] Rozansky, L.; Witten, E., Hyper-Kaehler geometry and invariants of three-manifolds, Selecta Math., 3, 401 (1997) · Zbl 0908.53027
[3] Atiyah, M., Topological quantum field theories, IHES Publ. Math., 68, 175 (1988) · Zbl 0692.53053
[4] Witten, E., Mirror manifolds and topological field theory · Zbl 0834.58013
[5] Douglas, M. R., D-branes, categories and \(N = 1\) supersymmetry, J. Math. Phys., 42, 2818 (2001) · Zbl 1036.81027
[6] Kontsevich, M.; Soibelman, Y., Notes on \(A_\infty\) algebras, \(A_\infty\) categories and noncommutative geometry. I · Zbl 1202.81120
[7] Costello, K., Topological conformal field theories and Calabi-Yau categories · Zbl 1171.14038
[8] Freed, D. S., Higher algebraic structures and quantization, Commun. Math. Phys., 159, 343 (1994) · Zbl 0790.58007
[9] Baez, J. C.; Dolan, J., Higher-dimensional algebra and topological quantum field theory, J. Math. Phys., 36, 6073 (1995) · Zbl 0863.18004
[10] Crane, L.; Yetter, D., On algebraic structures implicit in topological quantum field theories, J. Knot Theor. Ramifications, 8, 125 (1999) · Zbl 0935.57025
[11] Toen, B.; Vezzosi, C., A note on Chern character, loop spaces and derived algebraic geometry · Zbl 1177.14042
[12] Ben-Zvi, D.; Francis, J.; Nadler, D., Integral transforms and Drinfeld centers in derived algebraic geometry · Zbl 1202.14015
[13] A. Kapustin, L. Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry II, in preparation; A. Kapustin, L. Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry II, in preparation · Zbl 1220.81169
[14] Intriligator, K. A.; Seiberg, N., Mirror symmetry in three dimensional gauge theories, Phys. Lett. B, 387, 513 (1996)
[15] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program · Zbl 1128.22013
[16] Thompson, G., On the generalized Casson invariant, Adv. Theor. Math. Phys., 3, 249 (1999) · Zbl 0961.57007
[17] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353 (1988) · Zbl 0656.53078
[18] Bogomolov, F. A., Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, 243, 1101 (1978) · Zbl 0418.53026
[19] Todorov, A. N., The Weil-Petersson geometry of the moduli space of \(SU(n \geqslant 3)\) (Calabi-Yau) manifolds. I, Commun. Math. Phys., 126, 325 (1989) · Zbl 0688.53030
[20] Tian, G., Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, (Yau, S.-T., Mathematical Aspects of String Theory, Proceedings of the conference held at the University of California. Mathematical Aspects of String Theory, Proceedings of the conference held at the University of California, San Diego, CA, 1986 (1987), World Scientific: World Scientific Singapore), 629 · Zbl 0696.53040
[21] Voisin, C., Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, (Complex Projective Geometry. Complex Projective Geometry, Trieste, 1989/Bergen, 1989 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 294 · Zbl 0765.32012
[22] Kodaira, K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. Math., 75, 2, 146 (1962) · Zbl 0112.38404
[23] Kontsevich, M., Homological algebra of mirror symmetry · Zbl 0846.53021
[24] Weinstein, A., Symplectic geometry, Bull. Am. Math. Soc., 5, 1 (1981) · Zbl 0465.58013
[25] Bates, S.; Weinstein, A., Lectures on the Geometry of Quantization, Berkeley Mathematics Lectures Notes, vol. 8 (1997), AMS · Zbl 1049.53061
[26] Guillemin, V. W., Clean Intersection Theory and Fourier Integral Operators, Lecture Notes in Mathematics, vol. 459 (1975), Springer-Verlag, p. 23 · Zbl 0322.35071
[27] Weinstein, A., On Maslov’s Quantization Condition, Lecture Notes in Mathematics, vol. 459 (1975), Springer-Verlag, p. 341 · Zbl 0348.58016
[28] Kapustin, A.; Rozansky, L., On the relation between open and closed topological strings, Commun. Math. Phys., 252, 393 (2004) · Zbl 1102.81064
[29] Kapranov, M., Rozansky-Witten invariants via Atiyah classes, Compositio Math., 115, 71 (1999) · Zbl 0993.53026
[30] Roberts, J.; Willerton, S., On the Rozansky-Witten weight system · Zbl 1268.57007
[31] Lazaroiu, C. I., Graded Lagrangians, exotic topological D-branes and enhanced triangulated categories, JHEP, 0106, 064 (2001)
[32] Diaconescu, D. E., Enhanced D-brane categories from string field theory, JHEP, 0106, 016 (2001)
[33] Herbst, M.; Hori, K.; Page, D., Phases of \(N = 2\) theories in \(1 + 1\) dimensions with boundary · Zbl 1162.81033
[34] Bergman, A., New boundaries for the B-model
[35] Block, J., Duality and equivalence of module categories in noncommutative geometry I · Zbl 1201.58002
[36] A. Bondal, A. Rosly, in preparation; A. Bondal, A. Rosly, in preparation
[37] Kapustin, A.; Li, Y., D-branes in Landau-Ginzburg models and algebraic geometry, JHEP, 0312, 005 (2003)
[38] Brunner, I.; Herbst, M.; Lerche, W.; Scheuner, B., Landau-Ginzburg realization of open string TFT, JHEP, 0611, 043 (2006)
[39] Lazaroiu, C. I., On the boundary coupling of topological Landau-Ginzburg models, JHEP, 0505, 037 (2005)
[40] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 246, 240 (2004) · Zbl 1101.81093
[41] Orlov, D., Triangulated categories of singularities and equivalences between Landau-Ginzburg models · Zbl 1161.14301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.