×

Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type \(A\). (English) Zbl 1431.16014

Summary: We show that Coulomb branches of quiver gauge theories of affine type \(A\) are Cherkis bow varieties, which have been introduced as ADHM type description of moduli space of instantons on the Taub-NUT space equivariant under a cyclic group action.

MSC:

16G20 Representations of quivers and partially ordered sets
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Braverman, A., Dobrovolska, G., Finkelberg, M.: Gaiotto-Witten superpotential and Whittaker D-modules on monopoles, ArXiv e-prints (2014). arXiv:1406.6671 [math.AG] · Zbl 1383.14012
[2] Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb Branch of 3d \[{\cal{N}} =4N=4\] Theories, ArXiv e-prints (2015). arXiv:1503.04817 [hep-th] · Zbl 1379.81072
[3] Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian I: transversal slices via instantons on \[{A}_k\] Ak-singularities. Duke Math. J. 152(2), 175-206 (2010) · Zbl 1200.14083 · doi:10.1215/00127094-2010-011
[4] Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian III: Convolution with affine zastava. Mosc. Math. J. 13(2), 233-265, 363 (2013) · Zbl 1295.19001
[5] Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of \[33\]-dimensional \[{\cal{N}}=4N=4\] gauge theories, II, ArXiv e-prints (2016). arXiv:1601.03586 [math.RT] · Zbl 1479.81043
[6] Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of \[3d3\] d \[{\cal{N}}=4N=4\] quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes), ArXiv e-prints (2016). arXiv:1604.03625 [math.RT] · Zbl 1241.17028
[7] Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and \[{\cal{W}}W\]-algebras, Astérisque (2016), no. 385, vii+128. arXiv:1406.2381 [math.QA] · Zbl 1435.14001
[8] Bielawski, R.: Hyper-Kähler structures and group actions. J. London Math. Soc. (2) 55(2), 400-414 (1997) · Zbl 0866.53032 · doi:10.1112/S0024610796004723
[9] Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209-216 (2003) · Zbl 1026.14005 · doi:10.1007/s00031-003-0606-4
[10] Bellamy, G., Schedler, T.: Symplectic resolutions of Quiver varieties and character varieties, ArXiv e-prints (2016). arXiv:1602.00164 [math.AG] · Zbl 1492.16012
[11] Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257-293 (2001) · Zbl 1037.16007 · doi:10.1023/A:1017558904030
[12] Crawley-Boevey, W.: Normality of Marsden-Weinstein reductions for representations of quivers. Math. Ann. 325(1), 55-79 (2003) · Zbl 1063.16016 · doi:10.1007/s00208-002-0367-8
[13] Crawley-Boevey, W.: On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero. Duke Math. J. 118(2), 339-352 (2003) · Zbl 1046.15013 · doi:10.1215/S0012-7094-03-11825-6
[14] Cherkis, S.A.: Moduli spaces of instantons on the Taub-NUT space. Comm. Math. Phys. 290(2), 719-736 (2009) · Zbl 1193.58004 · doi:10.1007/s00220-009-0863-8
[15] Cherkis, S.A.: Instantons on the Taub-NUT space. Adv. Theor. Math. Phys. 14(2), 609-641 (2010) · Zbl 1372.53026 · doi:10.4310/ATMP.2010.v14.n2.a7
[16] Cherkis, S.A.: Instantons on gravitons. Commun. Math. Phys. 306(2), 449-483 (2011) · Zbl 1232.14006 · doi:10.1007/s00220-011-1293-y
[17] Cherkis, S.A., Kapustin, A.: Singular monopoles and supersymmetric gauge theories in three dimensions. Nucl. Phys. B 525(1-2), 215-234 (1998) · Zbl 1031.81643 · doi:10.1016/S0550-3213(98)00341-1
[18] Cherkis, S. A., O’Hara, C., Sämann, C.: Super Yang-Mills theory with impurity walls and instanton moduli spaces. Phys. Rev. D 83 (2011), no. 12, 126009. arXiv:1103.0042 [hep-th] · Zbl 1371.53044
[19] de Boer, J., Hori, K., Ooguri, H., Oz, Y., Yin, Z.: Mirror symmetry in three-dimensional gauge theories, \[{{\rm SL}}(2,{ Z})\] SL(2,Z) and D-brane moduli spaces. Nucl. Phys. B 493(1-2), 148-176 (1997) · Zbl 0973.14508 · doi:10.1016/S0550-3213(97)00115-6
[20] de Boer, J., Hori, K., Ooguri, H., Oz, Y.: Mirror symmetry in three-dimensional gauge theories, quivers and D-branes. Nucl. Phys. B 493(1-2), 101-147 (1997) · Zbl 0973.14507 · doi:10.1016/S0550-3213(97)00125-9
[21] Donaldson, S.K.: Nahm’s equations and the classification of monopoles. Commun. Math. Phys. 96(3), 387-407 (1984) · Zbl 0603.58042 · doi:10.1007/BF01214583
[22] Finkelberg, M., Rybnikov, L.: Quantization of Drinfeld zastava in type A. J. Eur. Math. Soc. 16(2), 235-271 (2014) · Zbl 1287.14024 · doi:10.4171/JEMS/432
[23] Hikita, T.: An algebro-geometric realization of the cohomology ring of hilbert scheme of points in the affine plane. Int. Math. Res. Not. IMRN 8, 2538-2561 (2017), arXiv:1501.02430 [math.AG] · Zbl 1405.14011
[24] Hurtubise, J.: The classification of monopoles for the classical groups. Commun. Math. Phys. 120(4), 613-641 (1989) · Zbl 0824.58015 · doi:10.1007/BF01260389
[25] Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492(1-2), 152-190 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[26] King, A.: Instantons and holomorphic bundles on the blown up plane, Ph.D. thesis, Oxford, (1989) · Zbl 1037.16007
[27] King, A.D.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515-530 (1994) · Zbl 0837.16005 · doi:10.1093/qmath/45.4.515
[28] Kraft, H., Procesi, C.: Closures of conjugacy classes of matrices are normal. Invent. Math. 53(3), 227-247 (1979) · Zbl 0434.14026 · doi:10.1007/BF01389764
[29] Kronheimer, P. B.: A hyperkähler structure on the cotangent bundle of a complex manifold. http://www.math.harvard.edu/ kronheim, (1988) · Zbl 0826.17026
[30] Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differential Geom. 29(3), 665-683 (1989) · Zbl 0671.53045 · doi:10.4310/jdg/1214443066
[31] Kronheimer, P.B.: Instantons and the geometry of the nilpotent variety. J. Differential Geom. 32(2), 473-490 (1990) · Zbl 0725.58007 · doi:10.4310/jdg/1214445316
[32] Le Bruyn, L., Procesi, C.: Semisimple representations of quivers. Trans. Am. Math. Soc. 317(2), 585-598 (1990) · Zbl 0693.16018 · doi:10.1090/S0002-9947-1990-0958897-0
[33] Losev, I.V.: Symplectic slices for actions of reductive groups. Mat. Sb. 197(2), 75-86 (2006) · Zbl 1152.14045 · doi:10.4213/sm1512
[34] Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1-27 (2005) · Zbl 1095.16008 · doi:10.4171/CMH/1
[35] Nakajima, H.: Homology of moduli spaces of instantons on ALE spaces. I. J. Differential Geom. 40(1), 105-127 (1994) · Zbl 0822.53019 · doi:10.4310/jdg/1214455288
[36] Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365-416 (1994) · Zbl 0826.17026 · doi:10.1215/S0012-7094-94-07613-8
[37] Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515-560 (1998) · Zbl 0970.17017 · doi:10.1215/S0012-7094-98-09120-7
[38] Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18. American Mathematical Society, Providence, RI (1999) · Zbl 0949.14001
[39] Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145-238 (2001). (electronic) · Zbl 0981.17016 · doi:10.1090/S0894-0347-00-00353-2
[40] Nakajima, H.: Quiver varieties and branching. Sigma Symmetry Integr. Geom. Methods Appl. 3, 37 (2009) · Zbl 1241.17028
[41] Nakajima, H.: Questions on provisional Coulomb branches of \[33\]-dimensional \[{\cal{N}}=4N=4\] gauge theories, Sūrikaisekikenkyūsho Kōkyūroku (2015), no. 1977, 57-76. arXiv:1510.03908 [math-ph] · Zbl 0603.58042
[42] Nakajima, H.: Towards a mathematical definition of Coulomb branches of \[33\]-dimensional \[{\cal{N}}=4N=4\] gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), no. 3, 595-669. arXiv:1503.03676 [math-ph] · Zbl 1433.81121
[43] Nakajima, H., Yoshioka, K.: Perverse coherent sheaves on blow-up. I. A quiver description, exploring new structures and natural constructions in mathematical physics. Adv. Stud. Pure Math. Math. Soc. Jpn, Tokyo 61, 349-386 (2011) · Zbl 1247.14009
[44] Oblomkov, A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243-266 (2004). (electronic) · Zbl 1078.20004 · doi:10.1090/S1088-4165-04-00246-8
[45] Takayama, Y.: Bow varieties and ALF spaces. Math. Proc. Cambridge Philos. Soc. 158(1), 37-82 (2015) · Zbl 1371.53044 · doi:10.1017/S0305004114000553
[46] Takayama, Y.: Nahm’s equations, quiver varieties and parabolic sheaves. Publ. Res. Inst. Math. Sci. 52(1), 1-41 (2016) · Zbl 1398.14021 · doi:10.4171/PRIMS/172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.