×

On some direct and inverse problems for an integro-differential equation. (English) Zbl 1540.35467

Summary: The direct and two inverse problems defined for an integro-differential equation on a bounded domain have been considered. The spectral problem of the integro-differential equation constitutes the Legendre differential equation in space variable. Finding a space-dependent source term whenever the data at some time, say \(T\), as over-specified condition, constitutes the Ist inverse problem. The 2nd inverse problem consists of recovering a time-dependent coefficient in the source term from an integral type over-specified condition. The Fourier approach is used to have the analytical series solution of the problems. The existence and uniqueness results for the direct and inverse problems under certain regularity conditions on the data are presented.

MSC:

35R30 Inverse problems for PDEs
35R09 Integro-partial differential equations
33E12 Mittag-Leffler functions and generalizations
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
80A23 Inverse problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Ahmad, A.; Ali, M.; Malik, SA, Inverse problems for diffusion equation with fractional Dzherbashian-Nersesian operator, Fract. Calc. Appl. Anal., 24, 1899-1918 (2021) · Zbl 1498.26006 · doi:10.1515/fca-2021-0082
[2] Ali, M.; Aziz, S.; Malik, SA, Inverse problem for a multi-parameters space-time fractional diffusion equation with nonlocal boundary conditions: operational calculus approach, J. Pseudo Differ. Oper. Appl., 13, 3 (2022) · Zbl 1481.35391 · doi:10.1007/s11868-021-00434-7
[3] Bazhlekova, E.; Bazhlekov, I., Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation, J. Comput. Appl. Math., 386 (2021) · Zbl 1458.35471 · doi:10.1016/j.cam.2020.113213
[4] Bekbolat, B.; Serikbaev, D.; Tokmagambetov, N., Direct and inverse problems for time-fractional heat equation generated by Dunkl operator, J. Inverse Ill-Posed Probl. (2022) · Zbl 1518.35618 · doi:10.1515/jiip-2021-0008
[5] Cheng, J.; Hofmann, B.; Scherzer, O., Regularization methods for ill-posed problems, Chapter 28 of handbook of mathematical methods in imaging, 87-109 (2011), New York: Springer Science+Business Media LCC, New York · Zbl 1259.65086 · doi:10.1007/978-1-4939-0790-8-3
[6] Durdiev, UD, A problem of identification of a special 2D memory kernel in an integro differential hyperbolic equation, Eurasian J. Math. Comput. Appl., 7, 4-19 (2019)
[7] Ilyas, A.; Malik, SA; Saif, S., Recovering source term and temperature distribution for nonlocal heat equation, Appl. Math. Comput., 439, 127610 (2023) · Zbl 07689963 · doi:10.1016/j.amc.2022.127610
[8] Ilyas, A.; Malik, SA, An inverse source problem for anomalous diffusion equation with generalized fractional derivative in time, Acta Appl. Math., 181, 15 (2022) · Zbl 1509.35379 · doi:10.1007/s10440-022-00532-8
[9] Ilyas, A.; Malik, SA; Saif, S., Inverse problems for a multi-term time fractional evolution equation with an involution, Inverse Probl. Sci. Eng., 29, 3377-3405 (2021) · Zbl 07484762 · doi:10.1080/17415977.2021.2000606
[10] Javed, S.; Malik, SA, Some inverse problems for fractional integro-differential equation involving two arbitrary kernels, Z. fur Angew. Math. Phys., 73, 140 (2022) · Zbl 1495.45011 · doi:10.1007/s00033-022-01770-4
[11] Jin, B.; Zou, J., Augmented Tikhonov regularization, Inverse Probl., 25, 025001 (2009) · Zbl 1163.65020 · doi:10.1088/0266-5611/25/2/025001
[12] Kian, Y.; Li, Z.; Liu, Y.; Yamamoto, M., The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann., 380, 1465-1495 (2021) · Zbl 1472.35455 · doi:10.1007/s00208-020-02027-z
[13] Kabanikhin, SI, Definitions and examples of inverse and ill-posed problems, J. Inverse Ill-Posed Probl., 3, 17-357 (2008) · Zbl 1170.35100 · doi:10.1515/JIIP.2008.019
[14] Kaplan, W., Advanced Calculus (2002), London: Pearson, London
[15] Kirane, M.; Malik, SA; Al-Gwaiz, MA, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Methods Appl. Sci, 36, 1056-1069 (2013) · Zbl 1267.80013 · doi:10.1002/mma.2661
[16] Luchko, Y.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam, 24, 207-233 (1999) · Zbl 0931.44003
[17] Malik, SA; Ilyas, A.; Samreen, A., Simultaneous determination of a source term and diffusion concentration for a multi-term space-time fractional diffusion equation, Math. Model. Anal., 26, 411-431 (2021) · Zbl 1492.35430 · doi:10.3846/mma.2021.11911
[18] Metzler, R.; Jeon, JH; Cherstvy, AG; Barkai, E., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 24128-24164 (2014) · doi:10.1039/C4CP03465A
[19] Nguyen, NV; Thang, NV; Thånh, NT, The quasi-reversibility method for an inverse source problem for time-space fractional parabolic equations, J. Differ. Equ., 344, 102-130 (2023) · Zbl 1502.35203 · doi:10.1016/j.jde.2022.10.029
[20] Sabatier, J.; Agrawal, OP; Machado, JAT, Advances in Fractional Calculus (2007), Dordrecht: Springer, Dordrecht · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[21] Sakamoto, K.; Yamamoto, M., Initial value/boudary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[22] Sandev, T.; Metzler, R.; Chechkin, A., From continuous time random walks to the generalized diffusion equation, Fract. Calc. Appl. Anal., 21, 10-28 (2018) · Zbl 1499.35683 · doi:10.1515/fca-2018-0002
[23] Sandev, T.; Sokolov, IM; Metzler, R.; Chechkin, A., Beyond monofractional kinetics, Chaos Solitons Fractals, 102, 210-217 (2017) · Zbl 1374.45016 · doi:10.1016/j.chaos.2017.05.001
[24] Song, S.; Zhang, X.; Li, C.; Wang, K.; Sun, X.; Ma, Y., Anomalous diffusion models in frequency-domain characterization of lithium-ion capacitors, J. Power Sour., 490, 229332 (2021) · doi:10.1016/j.jpowsour.2020.229332
[25] Suhaib, K.; Ilyas, A.; Malik, SA, On the inverse problems for a family of integro-differential equations, Math. Model. Anal., 28, 255-270 (2023) · Zbl 1518.35688 · doi:10.3846/mma.2023.16139
[26] Wang, H.; Zheng, X., Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475, 1778-1802 (2019) · Zbl 1516.35477 · doi:10.1016/j.jmaa.2019.03.052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.