×

Beyond monofractional kinetics. (English) Zbl 1374.45016

Summary: We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement.

MSC:

45K05 Integro-partial differential equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional fokker-planck equation, Phys Rev E, 61, 132 (2000)
[2] Bouchaud, J.-P.; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys Rep, 195, 127 (1990)
[3] Caputo, M., Elasticitá e dissipazione (1969), Zanichelli Printer, Bologna
[5] Caputo, M., Distributed order differential equations modeling dielectric induction and diffusion, Fract Calc Appl Anal, 4, 421 (2001) · Zbl 1042.34028
[6] del Castillo-Negrete, D.; Carreras, B. A.; Lynch, V. E., Front dynamics in reaction-diffusion systems with levy flights: a fractional diffusion approach, Phys Rev Lett, 91, 018302 (2003)
[7] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys Rev E, 66, 046129 (2002)
[8] Chechkin, A. V.; Klafter, J.; Sokolov, I. M., Fractional Fokker-Planck equation for ultraslow kinetics, EPL, 63, 326 (2003)
[9] Chechkin, A. V.; Gonchar, V.; Gorenflo, R.; Korabel, N.; Sokolov, I. M., Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights, Phys Rev E, 78, 021111 (2008)
[10] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M.; Gonchar, V., Distributed order fractional diffusion equation, Fract Calc Appl Anal, 6, 259 (2003) · Zbl 1089.60046
[11] Chechkin, A.; Sokolov, I. M.; Klafter, J., Natural and modified forms of distributed order fractional diffusion equations, (Klafter, J.; Lim, S.; Metzler, R., Fractional dynamics: recent advances (2011), World Scientific Publishing Company, Singapore), 107-128
[12] Compte, A., Stochastic foundations of fractional dynamics, Phys Rev E, 53, 4191 (1996)
[13] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher transcedential functions, vol. 3 (1955), McGraw-Hill, New York · Zbl 0064.06302
[14] Fogedby, H. C., Langevin equations for continuous time lévy flights, Phys Rev E, 50, 1657 (1994)
[15] Godec, A.; Chechkin, A. V.; Barkai, E.; Kantz, H.; Metzler, R., Localization and universal fluctuations in ultraslow diffusion processes, J. Phys. A, 47, 492002 (2006) · Zbl 1305.60074
[16] Gorenflo, R.; Luchko, Y.; Stojanovic, M., Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density, Fract Calc Appl Anal, 16, 297 (2013) · Zbl 1312.35179
[17] Gorenflo, R.; Mainardi, F., Simply and multiply scaled diffusion limits for continuous time random walks, J Phys, 7, 1 (2005)
[18] Kochubei, A. N., Distributed-order calculus: an operator-theoretic interpretation, Ukr Math J, 60, 551 (2008) · Zbl 1164.26009
[19] Kochubei, A. N., Distributed order calculus and equations of ultraslow diffusion, J Math Anal Appl, 340, 252 (2008) · Zbl 1149.26014
[20] Kochubei, A. N., Distributed order derivatives and relaxation patterns, J Phys A Math Theor, 42, 315203 (2009) · Zbl 1191.34005
[21] Koponen, I., Analytic approach to the problem of convergence of truncated levy flights towards the gaussian stochastic process, Phys Rev E, 52, 1197 (1995)
[22] Liemert, A.; Kienle, A., Fundamental solution of the tempered fractional diffusion equation, J Math Phys, 56, 113504 (2015) · Zbl 1328.35278
[23] Liemert, A.; Sandev, T.; Kantz, H., Generalized langevin equation with tempered memory kernel, Physica A, 466, 356 (2017) · Zbl 1400.82195
[24] Palyulin, V. V.; Chechkin, A. V.; Metzler, R., Lévy flights do not always optimize random blind search for sparse targets, Proc Natl Acad Sci USA, 111, 2931 (2014)
[25] Mainardi, F., Fractional calculus and waves in linear viscoelesticity: an introduction to mathematical models (2010), Imperial College Press, London · Zbl 1210.26004
[26] Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R., Time-fractional diffusion of distributed order, J Vib Control, 14, 1267 (2008) · Zbl 1229.35118
[27] Mainardi, F.; Pagnini, G., The role of the fox-wright functions in fractional sub-diffusion of distributed order, J Comput Appl Math, 207, 245 (2007) · Zbl 1120.35002
[28] Mantegna, R. N.; Stanley, H. E., Stochastic process with ultraslow convergence to a gaussian: the truncated lévy flight, Phys Rev Lett, 73, 2946 (1994) · Zbl 1020.82610
[29] Meerschaert, M. M.; Benson, D. A.; Scheffler, H. P.; Baeumer, B., Stochastic solution of space-time fractional diffusion equations, Phys Rev E, 65, 041103 (2002) · Zbl 1244.60080
[30] Meerschaert, M. M.; Straka, P., Inverse stable subordinators, Math Model Nat Phenom, 8, 1 (2013) · Zbl 1274.60153
[31] Meerschaert, M. M.; Scheffler, H. P., Stochastic model for ultraslow diffusion, Stochastic Process Appl, 116, 1215 (2006) · Zbl 1100.60024
[32] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., Distributed-order fractional diffusions on bounded domains, J Math Anal Appl, 379, 216 (2011) · Zbl 1222.35204
[33] Metzler, R.; Barkai, E.; Klafter, J., Deriving fractional fokker-planck equations from a generalised master equation, EPL, 46, 431 (1999)
[34] Metzler, R.; Jeon, J.-H.; Cherstvy, A. G., Non-brownian diffusion in lipid membranes: experiments and simulations, Biochim Biophys Acta, 1858, 2451 (2016)
[35] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J Phys A, 37, R161 (2004) · Zbl 1075.82018
[36] Norregaard, K.; Metzler, R.; Ritter, C. M.; Berg-Sørensen, K.; Oddershede, L. B., Manipulation and motion of organelles and single molecules in living cells, Chem Rev, 117, 4342 (2017)
[37] Podlubny, I., Fractional differential equations (1999), Academic Press, San Diego · Zbl 0918.34010
[38] Prabhakar, T. R., A singular integral equation with a generalized mittag-leffler function in kernel, Yokohama Math J, 19, 7 (1971) · Zbl 0221.45003
[39] Richardson, L. F., Proc. atmospheric diffusion shown on a distance-neighbour graph, Roy Soc A, 110, 709 (1926)
[40] Risken, H., The fokker-planck equation (1989), Springer, Heidelberg · Zbl 0665.60084
[41] Rosiński, J., Tempering stable processes, Stoch Process Appl, 117, 677 (2007) · Zbl 1118.60037
[42] Sandev, T.; Chechkin, A.; Kantz, H.; Metzler, R., Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel, Fract Calc Appl Anal, 18, 1006 (2015) · Zbl 1338.60199
[43] Sandev, T.; Chechkin, A.; Korabel, N.; Kantz, H.; Sokolov, I. M.; Metzler, R., Distributed-order diffusion equations and multifractality: models and solutions, Phys Rev E, 92, 042117 (2015)
[44] Sandev, T.; Iomin, A.; Kantz, H.; Metzler, R.; Chechkin, A., Comb model with slow and ultraslow diffusion, Math Model Nat Phenom, 11, 3, 18 (2016) · Zbl 1386.60287
[46] Saxena, R. K.; Pagnini, G., Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion i: the accelerating case, Physica A, 390, 602 (2011)
[47] Scher, H.; Margolin, G.; Metzler, R.; Klafter, J.; Berkowitz, B., The dynamical foundation of fractal stream chemistry: the origin of extremely long retention times, Geophys Res Lett, 29, 1061 (2002)
[48] Montroll, E. W., Random walks on lattices. III. calculation of first-passage times with application to exciton trapping on photosynthetic units, J Math Phys, 10, 753 (1969) · Zbl 1368.60049
[49] Schilling, R.; Song, R.; Vondracek, Z., Bernstein functions (2010), De Gruyter, Berlin · Zbl 1197.33002
[50] Schumer, R.; Meerschaert, M. M.; Baeumer, B., Fractional advection-dispersion equations for modeling transport at the earth surface, J Geophys Res, 114, F00A07 (2009)
[51] Sinai, Y. G., The limiting behavior of a one-dimensional random walk in a random medium, Theor Prob Appl, 27, 256 (1982) · Zbl 0505.60086
[52] Sokolov, I. M.; Chechkin, A. V.; Klafter, J., Fractional diffusion equation for a power-law-truncated lévy process, Physica A, 336, 245 (2004)
[53] Sokolov, I. M.; Chechkin, A. V.; Klafter, J., Distributed-order fractional kinetics, Acta Phys Pol B, 35, 1323 (2004)
[54] Sokolov, I. M.; Klafter, J., From diffusion to anomalous diffusion: a century after einstein’s brownian motion, Chaos, 15, 26103 (2005) · Zbl 1080.82022
[55] Sokolov, I. M.; Klafter, J., First steps in random walks (2016), Cambridge University Press, Cambridge UK · Zbl 1242.60046
[56] Solomon, T. H.; Weeks, E. R.; Swinney, H. L., Observation of anomalous diffusion and lévy flights in a two-dimensional rotating flow, Phys Rev Lett, 71, 3975 (1993)
[57] Stanislavsky, A., Probability interpretation of the integral of fractional order, Theor Math Phys, 138, 418 (2004) · Zbl 1178.26008
[58] Stanislavsky, A.; Weron, K.; Weron, A., Diffusion and relaxation controlled by tempered \(α\)-stable processes, Phys Rev E, 78, 051106 (2008)
[59] Kelly, J. F.; McGough, R. J.; Meerschaert, M. M., Analytical time-domain green’s functions for power-law media, J Acoust Soc Am, 124, 2861 (2008)
[60] Tateishi, A. A.; Lenzi, E. K.; Silva, L. R.d.; Ribeiro, H. V.; Picoli, S.; Mendes, R. S., Different diffusive regimes, generalized langevin and diffusion equations, Phys Rev E, 85, 011147 (2012)
[61] Umarov, S.; Gorenflo, R., The cauchy and multipoint problems for distributed order fractional differential equations, Zeitschrift Anal Ihre Anwendungen, 24, 449 (2005) · Zbl 1100.35132
[62] Umarov, S., Continuous time random walk models associated with distributed order diffusion equations, Frac Calc Appl Anal, 18, 821 (2015) · Zbl 1319.60096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.