×

Recovering source term and temperature distribution for nonlocal heat equation. (English) Zbl 07689963

Summary: We consider two problems of recovering the source terms along with heat concentration for a time fractional heat equation involving the so-called \(m\) th level fractional derivative (LFD) (proposed in a paper by Y. Luchko [Fract. Calc. Appl. Anal. 23, No. 4, 939–966 (2020; Zbl 1474.26024)]) in time variable of order between 0 and 1. The solutions of both problems are obtained by using eigenfunction expansion method. The series solutions of the inverse problems are proved to be unique and regular. The ill-posedness of inverse problems is proved in the sense of Hadamard and some numerical examples are presented.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations

Citations:

Zbl 1474.26024
Full Text: DOI

References:

[1] Luchko, Y., Fractional derivatives and the fundamental theorem of fractional calculus, Fract. Calc. Appl. Anal., 23, 939-966 (2020) · Zbl 1474.26024
[2] Bird, R. B.; Klingenberg, D. J., Multicomponent diffusion-a brief review, Adv. Water Resour., 62, 38-242 (2013)
[3] Itto, Y., Heterogeneous anomalous diffusion in view of super statistics, Phys. Lett. A., 378, 41, 3037-3040 (2014) · Zbl 1298.82035
[4] Hilfer, R., On fractional relaxation, Fractals, 11, 251-257 (2003) · Zbl 1140.82315
[5] Hilfer, R., Exact solutions for a class of fractal time random walks, Fractals, 3, 1, 211-216 (1995) · Zbl 0881.60066
[6] Hilfer, R., Fractional dynamics, irreversibility and ergodicity breaking, Chaos Solit. Fractals, 5, 8, 1475-1484 (1995) · Zbl 0907.58039
[7] Hilfer, R., Classification theory for an equilibrium phase transitions, Phys. Rev. E, 48, 4, 2466 (1993)
[8] Lukashchuk, S. Y., Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 80, 1, 791-802 (2015) · Zbl 1345.35131
[9] Ismailov, M. I.; Oĝur, B., An inverse diffusion problem with nonlocal boundary conditions, Numer. Methods Partial Differ. Equ., 32, 2, 564-590 (2016) · Zbl 1339.65159
[10] Muravei, L. A.; Filinovskii, A. V., On a problem with nonlocal boundary condition for a parabolic equation, Sb. Math., 182, 10, 1479-1512 (1991) · Zbl 0765.35022
[11] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 5, 1586-1593 (2010) · Zbl 1189.92007
[12] Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. T.; Bates, J. H.T., The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51, 141-159 (2017) · Zbl 1467.92050
[13] Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys., 76, 4, 046602 (2013)
[14] Hilfer, R., Applications of fractional calculus in physics world scientific publ. co, Singapore. (2000) · Zbl 0998.26002
[15] Metzler, R.; Jeon, J. H.; Cherstvy, A. G.; Barkai, E., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 44, 24128-24164 (2014)
[16] Paola, M. D., Complex fractional moments and their use in earthquake engineering, J. Earthq. Eng., 1-19 (2014)
[17] Machado, J. T.; Lopes, A. M., Relative fractional dynamics of stock markets, Nonlinear Dyn., 86, 3, 1613-1619 (2016)
[18] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 3, 201-210 (1983) · Zbl 0515.76012
[19] Mainardi, F., Fractional calculus and waves in linear viscoelaticity (2010), Imperial College Press · Zbl 1210.26004
[20] Zou, Y.; He, G., On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 74, 68-73 (2017) · Zbl 1376.34014
[21] Almeida, R.; Malinowska, A. B.; Monteiro, M. T.T., Fractional differential equations with a caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41, 1, 336-352 (2018) · Zbl 1384.34010
[22] Wang, H.; Zheng, X., Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475, 2, 1778-1802 (2019) · Zbl 1516.35477
[23] Zaky, M. A.; Machado, J. T., Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations, Comput. Math. Appl., 79, 2, 476-488 (2020) · Zbl 1443.65257
[24] Bhattacharyya, S.; Ghosh, T.; Uhlmann, G., Inverse problems for the fractional-laplacian with lower order non-local perturbations, Trans. Am. Math. Soc., 374, 5, 3053-3075 (2021) · Zbl 1461.35223
[25] Jiang, D.; Li, Z.; Liu, Y.; Yamamoto, M., Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Probl., 33, 5, 055013 (2017) · Zbl 1372.35364
[26] Kirane, M.; Malik, S. A.; Al-Gwaiz, M. A., An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Methods Appl. Sci., 36, 9, 1056-1069 (2013) · Zbl 1267.80013
[27] Ali, M.; Aziz, S.; Malik, S. A., Inverse source problem for a space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 21, 3, 844-863 (2018) · Zbl 1412.80006
[28] Ali, M.; Aziz, S.; Malik, S. A., Inverse problem for a multi-term fractional differential equation: Operational calculus approach, Fract. Calc. Appl. Anal., 23, 3, 799-821 (2020) · Zbl 1488.65379
[29] Ilyas, A.; Malik, S. A.; Saif, S., Inverse problems for a multi-term time fractional evolution equation with an involution, Inverse Probl. Sci. Eng., 29, 13, 3377-3405 (2021) · Zbl 07484762
[30] Malik, S. A.; Ilyas, A.; Samreen, S., Simultaneous determination of a source term and diffusion concentration for a multi-term space-time fractional diffusion equation, Math. Model. Anal., 26, 3, 411-431 (2021) · Zbl 1492.35430
[31] Gu, C. Y.; Wu, G. C.; Shiri, B., An inverse problem approach to determine possible memory length of fractional differential equations, Fract. Calc. Appl. Anal., 24, 6, 1919-1936 (2021) · Zbl 1498.34028
[32] Shiri, B.; Wu, G. C.; Baleanu, D., Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170, 162-178 (2021) · Zbl 1482.65109
[33] Podlubny, I., Fractional differential equations (1999), Academic Press · Zbl 0924.34008
[34] Samko, G. S.; Kilbas, A. A.; Marichev, D. I., Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers (1993) · Zbl 0818.26003
[35] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler Functions, Related Topics and Applications (2014), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1309.33001
[36] Ali, M.; Aziz, S.; Malik, S. A., Inverse source problems for a space-time fractional diffusion equation, Inverse Probl. Sci. Eng., 122, 1-22 (2019)
[37] Bilalov, B. T.; Gasymov, T. B.; Maharramova, G. V., Basis property of eigenfunctions in lebesgue spaces for a spectral problem with a point of discontinuity, Differ. Equ., 55, 12, 1544-1553 (2019) · Zbl 1444.34036
[38] Ionkin, N. I., Solution of a boundary-value problem in heat conduction with a non-classical boundary condition, Differ Equations, 13, 204-211 (1977) · Zbl 0403.35043
[39] Ismailov, M. I.; Kanca, F., An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions, Math. Methods Appl. Sci., 34, 6, 692-702 (2011) · Zbl 1213.35402
[40] Kerimov, N. B.; Ismailov, M. I., An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions, J. Math. Anal. Appl., 396, 2, 546-554 (2012) · Zbl 1248.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.