×

Normalized solutions for Schrödinger-Poisson equation with prescribed mass: the Sobolev subcritical case and the Sobolev critical case with mixed dispersion. (English) Zbl 1540.35196

Summary: In this paper, we study the following Schrödinger Poisson equation \[ \begin{cases} -\Delta u -\lambda u -\gamma (|x|^{-1} \ast |u|^2) u = f(u), & x \in \mathbb{R}^3; \\ \displaystyle\int\limits_{\mathbb{R}^3} u^2 dx = c, \end{cases} \] where \(c>0\), \(\lambda \in \mathbb{R}\) and \(f \in \mathcal{C}(\mathbb{R}, \mathbb{R})\). When \(\gamma <0\) and \(f\) satisfies some weaker \(L^2\)-supercritical conditions in Sobolev subcritical case, we show the existence of normalized solutions. When \(f(u) = \mu |u|^{q-2} u + |u|^4 u\) with \(\mu >0\), \(\gamma >0\) and \(2 < q < \frac{10}{3}\), a more complicated situation, we obtain the existence of multiple solutions. Our main tools are some technically simpler than the N. Ghoussoub minimax principle [Duality and perturbation methods in critical point theory. Cambridge: Cambridge University Press (1993; Zbl 0790.58002)], which not only allow us to construct a bounded (PS) sequence under some weaker conditions on \(f\) than before, but help to yield richer results. In particular, our results generalize and improve some ones in [L. Jeanjean and T. T. Le, J. Differ. Equations 303, 277–325 (2021; Zbl 1475.35163)] and some other related literatures.

MSC:

35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Azzollini, A.; Pomponio, A.; d’Avenia, P., On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 779-791 (2010) · Zbl 1187.35231
[2] Bardos, F.; Golse, A.; Gottlieb, D.; Mauser, N., Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl., 665-683 (2003) · Zbl 1029.82022
[3] Jeanjean, L.; Luo, T., Sharp nonexistence results of prescribed \(L^2\)-norm solutions for some class of Schrödinger-Poisson and quasilinear equations. Z. Angew. Math. Phys., 937-954 (2013) · Zbl 1294.35140
[4] Bartsch, T.; Jeanjean, L.; Soave, N., Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pures Appl., 583-614 (2016) · Zbl 1347.35107
[5] Bellazzini, J.; Siciliano, G., Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal., 2486-2507 (2011) · Zbl 1357.49053
[6] Berestycki, H.; Lions, P., Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal., 347-375 (1983) · Zbl 0556.35046
[7] Bellazzini, J.; Siciliano, G., Stable standing waves for a class of nonlinear Schrödinger-Poisson equations. Z. Angew. Math. Phys., 267-280 (2011) · Zbl 1339.35280
[8] Bellazzini, J.; Jeanjean, L., On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal., 2028-2058 (2016) · Zbl 1352.35157
[9] Bellazzini, J.; Jeanjean, L.; Luo, T., Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc., 303-339 (2013) · Zbl 1284.35391
[10] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc., 486-490 (1983) · Zbl 0526.46037
[11] Chen, S.; Tang, X., New approaches for Schrödinger equations with prescribed mass: the Sobolev subcritical case and the Sobolev critical case with mixed dispersion
[12] Chen, S.; Tang, X., Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal., 1637-1660 (2020) · Zbl 1437.35186
[13] Chen, S.; Shu, M.; Tang, X.; Wen, L., Planar Schrödinger-Poisson system with critical exponential growth in the zero mass case. J. Differ. Equ., 448-480 (2022) · Zbl 1490.35134
[14] Cazenave, T., Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics (2003), New York University, Courant Institute of Mathematical Sciences: New York University, Courant Institute of Mathematical Sciences New York, American Mathematical Society, Providence, RI · Zbl 1055.35003
[15] Chen, S.; Tang, X., Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth. J. Differ. Equ., 9144-9174 (2020) · Zbl 1448.35160
[16] Chen, S.; Yuan, S., Normalized solutions for Schrödinger-Poisson equations with general nonlinearities. J. Math. Anal. Appl. (2020) · Zbl 1431.35021
[17] Chen, S.; Fiscella, A.; Pucci, P.; Tang, X., Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations. J. Differ. Equ., 2672-2716 (2020) · Zbl 1436.35078
[18] Ghoussoub, N., Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics (1993), Cambridge University Press: Cambridge University Press Cambridge, with appendices by David Robinson · Zbl 0790.58002
[19] Hu, D.; Zhang, Q., Existence of multiple solutions for a class of Schrödinger-Maxwell system. Appl. Math. Lett. (2020) · Zbl 1436.35140
[20] Ianni, I.; Ruiz, D., Ground and bound states for a static Schrödinger-Poisson-Slater problem. Commun. Contemp. Math. (2012) · Zbl 1237.35146
[21] Jeanjean, L.; Le, T., Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation. J. Differ. Equ., 277-325 (2021) · Zbl 1475.35163
[22] Jeanjean, L.; Le, T., Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. (2021)
[23] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal., 1633-1659 (1997) · Zbl 0877.35091
[24] Jeanjean, L.; Lu, S., A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ., 5 (2020), 43
[25] Jeanjean, L.; Jendrej, J.; Le, T. T.; Visciglia, N., Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl., 158-179 (2022) · Zbl 1537.35324
[26] Lions, P., The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 223-283 (1984) · Zbl 0704.49004
[27] Lions, P., Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys., 33-97 (1987) · Zbl 0618.35111
[28] Lieb, E.; Simon, B., The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math., 22-116 (1977) · Zbl 0938.81568
[29] Mauser, N., The Schrödinger-Poisson-\( X_\alpha\) equation. Appl. Math. Lett., 759-763 (2001) · Zbl 0990.81024
[30] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal., 655-674 (2006) · Zbl 1136.35037
[31] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. (2020) · Zbl 1440.35311
[32] Shibata, M., A new rearrangement inequality and its application for \(L^2\)-constraint minimizing problem. Math. Z., 341-359 (2017) · Zbl 1382.35012
[33] Wei, J.; Wu, Y., Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. (2022) · Zbl 1500.35114
[34] Zeng, X.; Zhang, L., Normalized solutions for Schrödinger-Poisson-Slater equations with unbounded potentials. J. Math. Anal. Appl., 47-61 (2017) · Zbl 1376.35027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.