×

On the convexity of static output feedback control synthesis for systems with lossless nonlinearities. (English) Zbl 1539.93146

Summary: Computing a stabilizing static output-feedback (SOF) controller is an NP-hard problem, in general. Yet, these controllers have amassed popularity in recent years because of their practical use in feedback control applications, such as fluid flow control and sensor/actuator selection. The inherent difficulty of synthesizing SOF controllers is rooted in solving a series of non-convex problems that make the solution computationally intractable. In this note, we show that SOF synthesis is a convex problem for the specific case of systems with a lossless (i.e., energy-conserving) nonlinearity. Our proposed method ensures asymptotic stability of an SOF controller by enforcing the lossless behavior of the nonlinearity using a quadratic constraint approach. In particular, we formulate a bilinear matrix inequality (BMI) using the approach, then show that the resulting BMI can be recast as a linear matrix inequality (LMI). The resulting LMI is a convex problem whose feasible solution, if one exists, yields an asymptotically stabilizing SOF controller.

MSC:

93D15 Stabilization of systems by feedback
93D20 Asymptotic stability in control theory

Software:

CVX

References:

[1] Antoulas, A. C., Approximation of large-scale dynamical systems, (2005), SIAM · Zbl 1112.93002
[2] Astolfi, A.; Colaneri, P., A Hamilton-Jacobi setup for the static output feedback stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 47, 12, 2038-2041, (2002) · Zbl 1364.93617
[3] Bernstein, D. S., Some open problems in matrix theory arising in linear systems and control, Linear Algebra and its Applications, (1992)
[4] Blondel, V.; Tsitsiklis, J. N., NP-hardness of some linear control design problems, SIAM Journal on Control and Optimization, (1997) · Zbl 0892.93050
[5] Blondel, V. D.; Tsitsiklis, J. N., A survey of computational complexity results in systems and control, Automatica, 36, 9, 1249-1274, (2000) · Zbl 0989.93006
[6] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, Vol. 15, 203, (1994) · Zbl 0816.93004
[7] Boyd, S.; Vandenberghe, L., Convex optimization, (2004), Cambridge University Press · Zbl 1058.90049
[8] Cao, Y.-Y.; Lam, J.; Sun, Y.-X., Static output feedback stabilization: an ILMI approach, Automatica, 34, 12, 1641-1645, (1998) · Zbl 0937.93039
[9] Dalsmo, M.; Egeland, O., \( H_\infty\) control of nonlinear passive systems by output feedback, (Proceedings of 34th IEEE conference on decision and control, Vol. 1, (1995)), 351-352
[10] Dhingra, N. K.; Jovanović, M. R.; Luo, Z.-Q., An ADMM algorithm for optimal sensor and actuator selection, (53rd IEEE conference on decision and control, (2014)), 4039-4044
[11] Dinh, Q. T.; Gumussoy, S.; Michiels, W.; Diehl, M., Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback, IEEE Transactions on Automatic Control, 57, 6, 1377-1390, (2011) · Zbl 1369.90170
[12] Ekramian, M., Static output feedback problem for Lipschitz nonlinear systems, Journal of the Franklin Institute, 357, 3, 1457-1472, (2020) · Zbl 1430.93163
[13] El Ghaoui, L.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control, 42, 8, 1171-1176, (1997) · Zbl 0887.93017
[14] Grant, M.; Boyd, S.; Ye, Y., CVX: Matlab software for disciplined convex programming, (2008)
[15] Heins, P. H.; Jones, B. L.; Sharma, A. S., Passivity-based output-feedback control of turbulent channel flow, Automatica, (2016) · Zbl 1338.93127
[16] Iwasaki, T.; Skelton, R., The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design, International Journal of Control, 62, 6, 1257-1272, (1995) · Zbl 0839.93033
[17] Kalur, A.; Mushtaq, T.; Seiler, P.; Hemati, M. S., Estimating regions of attraction for transitional flows using quadratic constraints, IEEE Control Systems Letters, 1, (2021)
[18] Kalur, A., Seiler, P., & Hemati, M. (2020). Stability and performance analysis of nonlinear and non-normal systems using quadratic constraints. In AIAA aerospace sciences meeting: AIAA Paper 2020-0833.
[19] Kalur, A.; Seiler, P.; Hemati, M. S., Nonlinear stability analysis of transitional flows using quadratic constraints, Physical Review Fluids, 6, 4, Article 044401 pp., (2021)
[20] Khalil, H. K., Nonlinear systems, (2002), Prentice-Hall: Prentice-Hall Princeton, NJ · Zbl 1003.34002
[21] Liu, C.; Gayme, D. F., Input-output inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows, Physical Review E, 102, Article 063108 pp., (2020)
[22] Mushtaq, T.; Seiler, P.; Hemati, M., Feedback control of transitional flows: A framework for controller verification using quadratic constraints, (AIAA Aviation Forum, (2021)), AIAA Paper 2021-2825
[23] Polyak, B. T.; Khlebnikov, M. V.; Shcherbakov, P. S., Sparse feedback in linear control systems, Automation and Remote Control, 75, 12, 2099-2111, (2014) · Zbl 1327.93196
[24] Saat, S., & Nguang, S. K. (2015). Nonlinear \(H_\infty\) output feedback control with integrator for polynomial discrete-time systems. 25(7), 1051-1065. · Zbl 1312.93039
[25] Schmid, P. J.; Henningson, D. S., Stability and transition in shear flows, 556, (2001), Springer · Zbl 0966.76003
[26] Sharma, A. S.; Morrison, J. F.; McKeon, B. J.; Limebeer, D. J.N. L.; Koberg, W. H.; Sherwin, S. J., Relaminarisation of \(R e_\tau = 100\) channel flow with globally stabilising linear feedback control, Physics of Fluids, 23, 12, (2011)
[27] Syrmos, V. L.; Abdallah, C. T.; Dorato, P.; Grigoriadis, K., Static output feedback—a survey, Automatica, 33, 2, 125-137, (1997) · Zbl 0872.93036
[28] Toivonen, H. T.; Mäkilä, P. M., A descent Anderson-Moore algorithm for optimal decentralized control, Automatica, 21, 6, 743-744, (1985) · Zbl 0592.49021
[29] Yao, H.; Sun, Y.; Hemati, M., Feedback control of transitional shear flows: Sensor selection for performance recovery, Theoretical and Computational Fluid Dynamics, (2022)
[30] Yao, H.; Sun, Y.; Mushtaq, T.; Hemati, M., Reducing transient energy growth in a channel flow using static output feedback control, American Institute of Aeronautics and Astronautics, 60, 7, 4039-4052, (2022)
[31] Zare, A.; Jovanović, M. R., Optimal sensor selection via proximal optimization algorithms, (2018 IEEE conference on decision and control (CDC), (2018), IEEE), 6514-6518
[32] Zhao, D.; Wang, J.-L., Robust static output feedback design for polynomial nonlinear systems, International Journal of Robust and Nonlinear Control, 20, 14, 1637-1654, (2010) · Zbl 1204.93054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.