×

Local boundedness of weak solutions to elliptic equations with \(p, q\)-growth. (English) Zbl 1539.35091

Summary: This article is dedicated to Giuseppe Mingione for his \(50^{th}\) birthday, a leading expert in the regularity theory and in particular in the subject of this manuscript. In this paper we give conditions for the local boundedness of weak solutions to a class of nonlinear elliptic partial differential equations in divergence form of the type considered below in (1.1), under \(p, q\)-growth assumptions. The novelties with respect to the mathematical literature on this topic are the general growth conditions and the explicit dependence of the differential equation on \(u \), other than on its gradient \(Du\) and on the \(x\) variable.

MSC:

35J62 Quasilinear elliptic equations
35J15 Second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z · Zbl 1394.49034 · doi:10.1007/s00526-018-1332-z
[2] L. Beck, G. Mingione, Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944-1034. https://doi.org/10.1002/cpa.21880 · Zbl 1445.35140 · doi:10.1002/cpa.21880
[3] P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with \((p, q)-\) growth, Anal. PDE, 13 (2020), 2241-2257. https://doi.org/10.2140/apde.2020.13.2241 · Zbl 1460.49027 · doi:10.2140/apde.2020.13.2241
[4] P. Bella, M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Commun. Pure Appl. Math., 74 (2021), 453-477. https://doi.org/10.1002/cpa.21876 · Zbl 1469.35073 · doi:10.1002/cpa.21876
[5] S. Biagi, G. Cupini, E. Mascolo, Regularity of quasi-minimizers for non-uniformly elliptic integrals, J. Math. Anal. Appl., 485 (2020), 123838. https://doi.org/10.1016/j.jmaa.2019.123838 · Zbl 1437.49018 · doi:10.1016/j.jmaa.2019.123838
[6] M. Bildhauer, M. Fuchs, \(C^{1, \alpha}\)-solutions to non-autonomous anisotropic variational problems, Calc. Var., 24 (2005), 309-340. https://doi.org/10.1007/s00526-005-0327-8 · Zbl 1101.49029 · doi:10.1007/s00526-005-0327-8
[7] L. Boccardo, P. Marcellini, C. Sbordone, \(L^{\infty}\)- regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A (7), 4 (1990), 219-225. · Zbl 0711.49058
[8] V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Boundary regularity for elliptic systems with \(p, q-\) growth, J. Math. Pure. Appl., 159 (2022), 250-293. https://doi.org/10.1016/j.matpur.2021.12.004 · Zbl 1487.35147 · doi:10.1016/j.matpur.2021.12.004
[9] P. Bousquet, L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989-2032. https://doi.org/10.4171/RMI/1189 · Zbl 1460.35162 · doi:10.4171/RMI/1189
[10] S. S. Byun, J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var., 56 (2017), 46. https://doi.org/10.1007/s00526-017-1148-2 · Zbl 1378.35139 · doi:10.1007/s00526-017-1148-2
[11] S. S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269-1300. https://doi.org/10.2140/apde.2020.13.1269 · Zbl 1477.49057 · doi:10.2140/apde.2020.13.1269
[12] M. Carozza, H. Gao, R. Giova, F. Leonetti, A boundedness result for minimizers of some polyconvex integrals, J. Optim. Theory Appl., 178 (2018), 699-725. https://doi.org/10.1007/s10957-018-1335-0 · Zbl 1410.49043 · doi:10.1007/s10957-018-1335-0
[13] M. Caselli, M. Eleuteri, A. Passarelli di Napoli, Regularity results for a class of obstacle problems with \(p, q-\) growth conditions, ESAIM: COCV, 27 (2021), 19. https://doi.org/10.1051/cocv/2021017 · Zbl 1468.35068 · doi:10.1051/cocv/2021017
[14] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 17 (2000), 147-168. https://doi.org/10.1016/S0294-1449(99)00107-9 · Zbl 0984.49019 · doi:10.1016/S0294-1449(99)00107-9
[15] A. Cianchi, V. G. Maz’ya, Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rational Mech. Anal., 212 (2014), 129-177. https://doi.org/10.1007/s00205-013-0705-x · Zbl 1298.35070 · doi:10.1007/s00205-013-0705-x
[16] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219-273. https://doi.org/10.1007/s00205-015-0859-9 · Zbl 1325.49042 · doi:10.1007/s00205-015-0859-9
[17] G. Cupini, F. Leonetti, E. Mascolo, Local boundedness for minimizers of some polyconvex integrals, Arch. Rational Mech. Anal., 224 (2017), 269-289. https://doi.org/10.1007/s00205-017-1074-7 · Zbl 1365.49035 · doi:10.1007/s00205-017-1074-7
[18] G. Cupini, P. Marcellini, E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. B, 11 (2009), 67-86. https://doi.org/10.3934/dcdsb.2009.11.67 · Zbl 1158.49040 · doi:10.3934/dcdsb.2009.11.67
[19] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math., 137 (2012), 287-315. https://doi.org/10.1007/s00229-011-0464-7 · Zbl 1235.35129
[20] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems, In: Recent trends in nonlinear partial differential equations. II. Stationary problems, Providence, RI: Amer. Math. Soc., 2013,169-186. http://doi.org/10.1090/conm/595/11803 · Zbl 1294.35016
[21] G. Cupini, P. Marcellini, E. Mascolo, Existence and regularity for elliptic equations under \(p, q-\) growth, Adv. Differential Equations, 19 (2014), 693-724. · Zbl 1305.35041
[22] G. Cupini, P. Marcellini, E. Mascolo, Local boundedness of minimizers with limit growth condition, J. Optim. Theory Appl., 166 (2015), 1-22. https://doi.org/10.1007/s10957-015-0722-z · Zbl 1325.49043
[23] G. Cupini, P. Marcellini, E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Anal., 153 (2017), 294-310. https://doi.org/10.1016/j.na.2016.06.002 · Zbl 1358.49032 · doi:10.1016/j.na.2016.06.002
[24] G. Cupini, P. Marcellini, E. Mascolo, Nonuniformly elliptic energy integrals with \(p, q-\) growth, Nonlinear Anal., 177, Part A (2018), 312-324. https://doi.org/10.1016/j.na.2018.03.018 · Zbl 1403.49033 · doi:10.1016/j.na.2018.03.018
[25] G. Cupini, P. Marcellini, E. Mascolo, A. Passarelli di Napoli, Lipschitz regularity for degenerate elliptic integrals with \(p, q-\) growth, Adv. Calc. Var., in press. https://doi.org/10.1515/acv-2020-0120 · Zbl 1511.49001
[26] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584-1626. https://doi.org/10.1007/s12220-019-00225-z · Zbl 1437.35292 · doi:10.1007/s12220-019-00225-z
[27] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 242 (2021), 973-1057. https://doi.org/10.1007/s00205-021-01698-5 · Zbl 1483.49050 · doi:10.1007/s00205-021-01698-5
[28] C. De Filippis, M. Piccinini, Borderline global regularity for nonuniformly elliptic systems, Int. Math. Res. Notices, in press. https://doi.org/10.1093/imrn/rnac283 · Zbl 1531.49040
[29] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43. · Zbl 0084.31901
[30] M. De Rosa, A. G. Grimaldi, A local boundedness result for a class of obstacle problems with non-standard growth conditions, J. Optim. Theory Appl., 195 (2022), 282-296. https://doi.org/10.1007/s10957-022-02084-1 · Zbl 1500.35135 · doi:10.1007/s10957-022-02084-1
[31] E. Di Benedetto, U. Gianazza, V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic \(p-\) Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157-169. https://doi.org/10.1007/BF03377399 · Zbl 1386.35113 · doi:10.1007/BF03377399
[32] T. Di Marco, P. Marcellini, A-priori gradient bound for elliptic systems under either slow or fast growth conditions, Calc. Var., 59 (2020), 120. https://doi.org/10.1007/s00526-020-01769-7 · Zbl 1442.35049 · doi:10.1007/s00526-020-01769-7
[33] F. G. Düzgun, P. Marcellini, V. Vespri, An alternative approach to the Hölder continuity of solutions to some elliptic equations, Nonlinear Anal. Theor., 94 (2014), 133-141. https://doi.org/10.1016/j.na.2013.08.018 · Zbl 1284.35198 · doi:10.1016/j.na.2013.08.018
[34] M. Eleuteri, P. Marcellini, E. Mascolo, Local Lipschitz continuity of minimizers with mild assumptions on the \(x\)-dependence, Discrete Contin. Dyn. Syst. S, 12 (2019), 251-265. https://doi.org/10.3934/dcdss.2019018 · Zbl 1411.49022 · doi:10.3934/dcdss.2019018
[35] M. Eleuteri, P. Marcellini, E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var., 13 (2020), 279-300. https://doi.org/10.1515/acv-2017-0037 · Zbl 1445.35159 · doi:10.1515/acv-2017-0037
[36] M. Eleuteri, P. Marcellini, E. Mascolo, S. Perrotta, Local Lipschitz continuity for energy integrals with slow growth, Annali di Matematica, 201 (2022), 1005-1032. https://doi.org/10.1007/s10231-021-01147-w · Zbl 1491.35192 · doi:10.1007/s10231-021-01147-w
[37] N. Fusco, C. Sbordone, Local boundedness of minimizers in a limit case, Manuscripta Math., 69 (1990), 19-25. https://doi.org/10.1007/BF02567909 · Zbl 0722.49012 · doi:10.1007/BF02567909
[38] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Commun. Part. Diff. Eq., 18 (1993), 153-167. https://doi.org/10.1080/03605309308820924 · Zbl 0795.49025 · doi:10.1080/03605309308820924
[39] A. Gentile, Regularity for minimizers of a class of non-autonomous functionals with sub-quadratic growth, Adv. Calc. Var., 15 (2022), 385-399. https://doi.org/10.1515/acv-2019-0092 · Zbl 1494.49025 · doi:10.1515/acv-2019-0092
[40] M. Giaquinta, E. Giusti, Quasi-minima, Ann. Inst. H. Poincaré C Analyse non-linéaire, 1 (1984), 79-107. https://doi.org/10.1016/S0294-1449(16)30429-2 · Zbl 0541.49008
[41] E. Giusti, Direct methods in the calculus of variations, River Edge, NJ: World Scientific Publishing Co. Inc., 2003. https://doi.org/10.1142/5002 · Zbl 1028.49001
[42] T. Granucci, M. Randolfi, Local boundedness of Quasi-minimizers of fully anisotropic scalar variational problems, Manuscripta Math., 160 (2019), 99-152. https://doi.org/10.1007/s00229-018-1055-7 · Zbl 1435.35158 · doi:10.1007/s00229-018-1055-7
[43] J. Hirsch, M. Schäffner, Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math., 23 (2021), 2050029. https://doi.org/10.1142/S0219199720500297 · Zbl 1458.49009 · doi:10.1142/S0219199720500297
[44] Ī. M. Kolodīĭ, The boundedness of generalized solutions of elliptic differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 25 (1970), 44-52. · Zbl 0207.10701
[45] O. Ladyzhenskaya, N. Ural’tseva, Linear and quasilinear elliptic equations, New York-London: Academic Press, 1968. · Zbl 0164.13002
[46] P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. https://doi.org/10.1007/BF00251503 · Zbl 0667.49032 · doi:10.1007/BF00251503
[47] P. Marcellini, Regularity and existence of solutions of elliptic equations with \(p, q-\) growth conditions, J. Differ. Equations, 90 (1991), 1-30. https://doi.org/10.1016/0022-0396(91)90158-6 · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[48] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differ. Equations, 105 (1993), 296-333. https://doi.org/10.1006/jdeq.1993.1091 · Zbl 0812.35042 · doi:10.1006/jdeq.1993.1091
[49] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 23 (1996), 1-25. · Zbl 0922.35031
[50] P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90 (1996), 161-181. https://doi.org/10.1007/BF02192251 · Zbl 0901.49030 · doi:10.1007/BF02192251
[51] P. Marcellini, Regularity under general and \(p, q-\) growth conditions, Discrete Contin. Dyn. Syst. S, 13 (2020), 2009-2031. https://doi.org/10.3934/dcdss.2020155 · Zbl 1439.35102 · doi:10.3934/dcdss.2020155
[52] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501 (2021), 124408. https://doi.org/10.1016/j.jmaa.2020.124408 · Zbl 1512.35301 · doi:10.1016/j.jmaa.2020.124408
[53] P. Marcellini, Local Lipschitz continuity for \(p, q-\) PDEs with explicit \(u-\) dependence, Nonlinear Anal., 226 (2023), 113066. https://doi.org/10.1016/j.na.2022.113066 · Zbl 1501.35188 · doi:10.1016/j.na.2022.113066
[54] G. Mingione, Regularity of minima: an invitation to the dark side of the Calculus of Variations, Appl. Math., 51 (2006), 355-426. https://doi.org/10.1007/s10778-006-0110-3 · Zbl 1164.49324 · doi:10.1007/s10778-006-0110-3
[55] G. Mingione, G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal., 194 (2020), 111452. https://doi.org/10.1016/j.na.2019.02.006 · Zbl 1436.35163 · doi:10.1016/j.na.2019.02.006
[56] G. Mingione, V. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. https://doi.org/10.1016/j.jmaa.2021.125197 · Zbl 1467.49003 · doi:10.1016/j.jmaa.2021.125197
[57] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, Indiana Univ. Math. J., 57 (2008), 3329-3363. https://doi.org/10.1512/iumj.2008.57.3525 · Zbl 1171.35057 · doi:10.1512/iumj.2008.57.3525
[58] M. Schäffner, Higher integrability for variational integrals with non-standard growth, Calc. Var., 60 (2021), 77. https://doi.org/10.1007/s00526-020-01907-1 · Zbl 1462.49015 · doi:10.1007/s00526-020-01907-1
[59] B. Stroffolini, Global boundedness of solutions of anisotropic variational problems, Boll. Un. Mat. Ital. A (7), 5 (1991), 345-352. · Zbl 0754.49026
[60] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126-150. https://doi.org/10.1016/0022-0396(84)90105-0 · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.