×

Local boundedness for minimizers of some polyconvex integrals. (English) Zbl 1365.49035

The authors are concerned with the study of local regularity of minimisers for variational integrals \[ I(u,\Omega)=\int_\Omega f(Du)dx, \] where \(u:\Omega\subset {\mathbb R}^3\to {\mathbb R}^3\) and \(f\) is polyconvex. Under some structure assumptions on the energy density, the main results of the papers establish that local minimizers \(u\) satisfy \(u\in L^\infty_{\mathrm{loc}}(\Omega,{\mathbb R}^3)\). The approach relies on Caccioppoli type estimates combined with De Giorgi iteration techniques.

MSC:

49N60 Regularity of solutions in optimal control
35J50 Variational methods for elliptic systems

References:

[1] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337-403 (1977) · Zbl 0368.73040 · doi:10.1007/BF00279992
[2] Ball, J.M.: Constitutive inequalities and existence theorems in elastostatics. In: Nonlinear Analysis and Mechanics, Proceedings, Research Notes, Vol. 17. (Ed. R.J. Knops) Pitman, London, 13-25, 1977 · Zbl 1164.49324
[3] Bauman P., Owen N., Phillips D.: Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. Henri Poincare Anal. Non Lineaire 8, 119-157 (1991) · Zbl 0733.35015
[4] Bauman P., Owen N., Phillips D.: Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity. Proc. R. Soc. Edinb. Sect. A 119, 241-263 (1991) · Zbl 0744.49008 · doi:10.1017/S0308210500014815
[5] Bauman P., Owen N., Phillips D.: Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity. Commun. Partial Differ. Equ. 17, 1185-1212 (1992) · Zbl 0777.35014 · doi:10.1080/03605309208820882
[6] Bauman P., Phillips D.: Univalent minimizers of polyconvex functionals in two dimensions. Arch. Ration. Mech. Anal. 126, 161-181 (1994) · Zbl 0809.49039 · doi:10.1007/BF00391557
[7] Carozza M., Passarelli di Napoli A.: Model problems from nonlinear elasticity: partial regularity results. ESAIM Control Opt. Calc. Var. 13, 120-134 (2007) · Zbl 1221.35132 · doi:10.1051/cocv:2007007
[8] Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, Vol. 78, 2nd edn, Springer, New York 2008 · Zbl 1140.49001
[9] D’Ottavio, A., Leonetti, F., Musciano, C.: Maximum principle for vector-valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Modena46 Suppl. 677-683 1998 · Zbl 0913.35026
[10] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4) 1, 135-137 (1968) · Zbl 0155.17603
[11] Esposito L., Leonetti F., Mingione G.: Sharp regularity results for functionals with (p,q) growth. J. Differ. Equ. 204, 5-55 (2004) · Zbl 1072.49024 · doi:10.1016/j.jde.2003.11.007
[12] Esposito L., Mingione G.: Partial regularity for minimizers of degenerate polyconvex energies. J. Convex Anal. 8, 1-38 (2001) · Zbl 0977.49024
[13] Fonseca I., Maly J., Mingione G.: Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 172, 295-307 (2004) · Zbl 1049.49015 · doi:10.1007/s00205-003-0301-6
[14] Fuchs M., Reuling J.: Partial regularity for certain classes of polyconvex functionals related to non linear elasticity. Manuscr. Math. 87, 13-26 (1995) · Zbl 0827.73009 · doi:10.1007/BF02570458
[15] Fuchs M., Seregin G.: Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity. Algebra Anal. 6, 128-153 (1994) · Zbl 0827.73010
[16] Fuchs M., Seregin G.: Holder continuity for weak estremals of some two-dimensional variational problems related to non linear elasticity. Adv. Math. Sci. Appl. 7, 413-425 (1997) · Zbl 0929.49021
[17] Fusco N., Hutchinson J.E.: Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. Anal. 22(6), 1516-1551 (1991) · Zbl 0744.35014 · doi:10.1137/0522098
[18] Fusco N., Hutchinson J.E.: Partial regularity andeverywhere continuity for a model problem from non-linear elasticity. J. Aust. Math. Soc. Ser. A 57(2), 158-169 (1994) · Zbl 0864.35032 · doi:10.1017/S1446788700037496
[19] Fusco N., Sbordone C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18, 153-167 (1993) · Zbl 0795.49025 · doi:10.1080/03605309308820924
[20] Giaquinta M.: Growth conditions and regularity, a counterexample. Manuscr. Math. 59, 245-248 (1987) · Zbl 0638.49005 · doi:10.1007/BF01158049
[21] Giusti E.: Direct Methods in the Calculus of Variations. World Scientific, River Edge (2003) · Zbl 1028.49001 · doi:10.1142/5002
[22] Hamburger C.: Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. Partial Differ. Equ. 18, 221-241 (2003) · Zbl 1048.49027 · doi:10.1007/s00526-003-0189-x
[23] Hong M.C.: Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. Un Mat. Ital. A 6, 91-101 (1992) · Zbl 0768.49022
[24] Leonetti F.: Maximum principle for vector-valued minimizers of some integral functionals. Boll. Un Mat. Ital. A 5, 51-56 (1991) · Zbl 0729.49015
[25] Leonetti F.: Pointwise estimates for a model problem in nonlinear elasticity. Forum Math. 18, 529-534 (2006) · Zbl 1125.49029 · doi:10.1515/FORUM.2006.027
[26] Leonetti F., Petricca P.V.: Bounds for some minimizing sequences of functionals. Adv. Calc. Var. 4, 83-100 (2011) · Zbl 1206.49040 · doi:10.1515/acv.2010.018
[27] Leonetti F., Petricca P.V.: Bounds for vector valued minimizers of some relaxed functionals. Complex Var. Elliptic Equ. 58, 221-230 (2013) · Zbl 1258.49061 · doi:10.1080/17476933.2011.575460
[28] Leonetti F., Siepe F.: Maximum principle for vector-valued minimizers of some integral functionals. J. Convex Anal. 12, 267-278 (2005) · Zbl 1098.49033
[29] Leonetti F., Siepe F.: Bounds for vector valued minimizers of some integral functionals. Ricerche Mat. 54(1), 303-312 (2005) · Zbl 1354.49080
[30] Marcellini, P.: Un example de solution discontinue d’un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico “U.Dini”, Università di Firenze, 1987 · Zbl 1221.35132
[31] Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267-284 (1989) · Zbl 0667.49032 · doi:10.1007/BF00251503
[32] Marcellini P.: Regularity and existence of solutions of elliptic equations with \[{p-q}\] p-q-growth conditions. J. Differ. Equ. 90, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[33] Mingione G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355-426 (2006) · Zbl 1164.49324 · doi:10.1007/s10778-006-0110-3
[34] Mingione G.: Singularities of minima: a walk in the wild side of the calculus of variations. J. Glob. Optim. 40, 209-223 (2008) · Zbl 1295.49025 · doi:10.1007/s10898-007-9226-1
[35] Mooney C., Savin O.: Some singular minimizers in low dimensions in the calculus of variations. Arch. Rational Mech. Anal. 221, 1-22 (2016) · Zbl 1338.49040 · doi:10.1007/s00205-015-0955-x
[36] Morrey C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966) · Zbl 0142.38701
[37] Moscariello G., Nania L.: Hölder continuity of minimizers of functionals with non standard growth conditions. Ricerche Mat. 40, 259-273 (1991) · Zbl 0773.49019
[38] Muller S.: Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412, 20-34 (1990) · Zbl 0713.49004
[39] Ogden, R.W.: Nonlinear Elastic Deformations, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, New York 1984 · Zbl 0659.73038
[40] Passarellidi Napoli A.: A regularity result for a class of polyconvex functionals. Ricerche Mat. 48, 379-393 (1999) · Zbl 0947.35052
[41] Reshetnyak Y.: Stability theorems for mappings with bounded distortion. Sib. Mat. Zh. 9, 667-684 (1968) · Zbl 0162.38301
[42] Šverák V.: Regularity properties for deformations with finite energy. Arch. Ration. Mech. Anal. 100, 105-127 (1988) · Zbl 0659.73038 · doi:10.1007/BF00282200
[43] Šverák V., Yan X.: A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10, 213-221 (2000) · Zbl 1013.49027 · doi:10.1007/s005260050151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.